Patents by Inventor W. Michael AINLEY

W. Michael AINLEY has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11198883
    Abstract: Disclosed herein are methods and compositions for parallel or sequential transgene stacking in plants to produce plants with selected phenotypes.
    Type: Grant
    Filed: November 5, 2019
    Date of Patent: December 14, 2021
    Assignees: Dow AgroSciences LLC, Sangamo Therapeutics, Inc.
    Inventors: W. Michael Ainley, Dmitry Y. Guschin, Matthew Hayden, Daniel Isenegger, John Mason, Jeffrey C. Miller, Joseph F. Petolino, Yidong Ran, Tim Sawbridge, German Spangenberg, Steven R. Webb
  • Patent number: 11098316
    Abstract: As disclosed herein, optimal native genomic loci of soybean plants have been identified that represent best sites for targeted insertion of exogenous sequences.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: August 24, 2021
    Assignee: Corteva Agriscience LLC
    Inventors: Lakshmi Sastry-Dent, Zehui Cao, Shreedharan Sriram, Steven R. Webb, Debra L. Camper, W. Michael Ainley
  • Publication number: 20210230617
    Abstract: As disclosed herein, optimal native genomic loci of soybean plants have been identified that represent best sites for targeted insertion of exogenous sequences.
    Type: Application
    Filed: April 7, 2021
    Publication date: July 29, 2021
    Inventors: Lakshmi SASTRY-DENT, Zehui CAO, Shreedharan SRIRAM, Steven R. WEBB, Debra L. CAMPER, W. Michael AINLEY
  • Patent number: 11008578
    Abstract: A method for producing a transgenic plant includes providing a nucleic acid molecule comprising at least two regions of nucleic acid sequence that lack sequence homology with genomic DNA of the plant cell, and at least two zinc finger nuclease recognition sites, wherein the at least two regions of nucleic acid sequence that lack sequence homology with genomic DNA of the plant cell flank the at least two zinc finger nuclease recognition sites. A plant cell or tissue having the nucleic acid molecule stably integrated into the genome of the plant cell is transformed. A plant is regenerated from the plant cell. Transgenic plants are produced by the method. Seeds are produced by the transgenic plants.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: May 18, 2021
    Assignee: Corteva Agriscience LLC
    Inventors: W. Michael Ainley, Ryan C. Blue, Michael G. Murray, David Richard Corbin, Rebecca Ruth Miles, Steven R. Webb
  • Patent number: 10961540
    Abstract: A method of gene editing or gene stacking within a FAD3 loci by cleaving, in a site directed manner, a location in a FAD3 gene in a cell, to generate a break in the FAD3 gene and then ligating into the break a nucleic acid molecule associated with one or more traits of interest is disclosed.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: March 30, 2021
    Assignees: Dow AgroSciences LLC, Sangamo Therapeutics, Inc.
    Inventors: Noel Cogan, John Forster, Matthew Hayden, Tim Sawbridge, German Spangenberg, Steven R. Webb, Manju Gupta, W. Michael Ainley, Matthew J. Henry, Jeffrey C. Miller, Dmitry Y. Guschin
  • Patent number: 10844389
    Abstract: Methods and compositions for gene disruption, gene editing or gene stacking within a FAD2 loci by cleaving, in a site directed manner, a location in a FAD2 gene in a soybean cell, to generate a break in the FAD2 gene and then optionally integrating into the break a nucleic acid molecule of interest is disclosed.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: November 24, 2020
    Assignees: Dow AgroSciences LLC, Sangamo Therapeutics, Inc.
    Inventors: W. Michael Ainley, Steven R. Webb, Jayakumar P. Samuel, Dmitry Y. Guschin, Jeffrey C. Miller, Lei Zhang
  • Publication number: 20200087671
    Abstract: A method of gene editing or gene stacking within a FAD3 loci by cleaving, in a site directed manner, a location in a FAD3 gene in a cell, to generate a break in the FAD3 gene and then ligating into the break a nucleic acid molecule associated with one or more traits of interest is disclosed.
    Type: Application
    Filed: November 27, 2019
    Publication date: March 19, 2020
    Inventors: Noel Cogan, John Forster, Matthew Hayden, Tim Sawbridge, German Spangenberg, Steven R. Webb, Manju Gupta, W. Michael Ainley, Matthew J. Henry, Jeffrey C. Miller, Dmitry Y. Guschin
  • Publication number: 20200071712
    Abstract: Disclosed herein are methods and compositions for parallel or sequential transgene stacking in plants to produce plants with selected phenotypes.
    Type: Application
    Filed: November 5, 2019
    Publication date: March 5, 2020
    Inventors: W. Michael Ainley, Dmitry Y. Guschin, Matthew Hayden, Daniel Isenegger, John Mason, Jeffrey C. Miller, Joseph F. Petolino, Yidong Ran, Tim Sawbridge, German Spangenberg, Steven R. Webb
  • Patent number: 10577616
    Abstract: A method of gene editing or gene stacking within a FAD2 loci by cleaving, in a site directed manner, a location in a FAD2 gene in a cell, to generate a break in the FAD2 gene and then ligating into the break a nucleic acid molecule associated with one or more traits of interest is disclosed.
    Type: Grant
    Filed: April 2, 2018
    Date of Patent: March 3, 2020
    Assignees: Dow AgroSciences LLC, Sangamo Therapeutics, Inc.
    Inventors: Noel Cogan, John Forster, Matthew Hayden, Tim Sawbridge, German Spangenberg, Steven R. Webb, Manju Gupta, W. Michael Ainley, Matthew J. Henry, Jeffrey C. Miller, Dmitry Y. Guschin
  • Patent number: 10526610
    Abstract: A method of gene editing or gene stacking within a FAD3 loci by cleaving, in a site directed manner, a location in a FAD3 gene in a cell, to generate a break in the FAD3 gene and then ligating into the break a nucleic acid molecule associated with one or more traits of interest is disclosed.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: January 7, 2020
    Assignees: Dow AgroSciences LLC, Sangamo Therapeutics, Inc.
    Inventors: Noel Cogan, John Forster, Matthew Hayden, Tim Sawbridge, German Spangenberg, Steven R. Webb, Manju Gupta, W. Michael Ainley, Matthew J. Henry, Jeffrey C. Miller, Dmitry Y. Guschin
  • Patent number: 10501748
    Abstract: Disclosed herein are methods and compositions for parallel or sequential transgene stacking in plants to produce plants with selected phenotypes.
    Type: Grant
    Filed: April 2, 2014
    Date of Patent: December 10, 2019
    Assignees: Dow AgroSciences LLC, Sangamo Therapeutics, Inc.
    Inventors: W. Michael Ainley, Dmitry Y. Guschin, Matthew Hayden, Daniel Isenegger, John Mason, Jeffrey C. Miller, Joseph F. Petolino, Yidong Ran, Tim Sawbridge, German Spangenberg, Steven R. Webb
  • Publication number: 20190316141
    Abstract: Methods and compositions for gene disruption, gene editing or gene stacking within a FAD2 loci by cleaving, in a site directed manner, a location in a FAD2 gene in a soybean cell, to generate a break in the FAD2 gene and then optionally integrating into the break a nucleic acid molecule of interest is disclosed.
    Type: Application
    Filed: April 23, 2019
    Publication date: October 17, 2019
    Inventors: W. Michael Ainley, Steven R. Webb, Jayakumar P. Samuel, Dmitry Y. Guschin, Jeffrey C. Miller, Lei Zhang
  • Patent number: 10415046
    Abstract: The present invention claims methods for the stable integration of exogenous DNA into a specific locus, E32, in the maize genome through the use of zinc finger nucleases. Maize plants and plant parts that were transformed by the methods of the invention are claimed. The invention is useful for creating desirable traits such as herbicide resistance, herbicide tolerance, insect resistance, insect tolerance, disease resistance, disease tolerance, stress tolerance, and stress resistance in maize The E32 locus represents a superior site for inserting foreign genes because native agronomic phenotypes are not disturbed.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: September 17, 2019
    Assignee: Dow AgroSciences LLC
    Inventors: W. Michael Ainley, James W. Bing, David R. Corbin, Steven L. Evans, Joseph F. Petolino, Lakshmi Sastry-Dent, Steven A. Thompson, Steven R. Webb, Mary E. Welter, Ning Zhou
  • Patent number: 10287595
    Abstract: Methods and compositions for gene disruption, gene editing or gene stacking within a FAD2 loci by cleaving, in a site directed manner, a location in a FAD2 gene in a soybean cell, to generate a break in the FAD2 gene and then optionally integrating into the break a nucleic acid molecule of interest is disclosed.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: May 14, 2019
    Assignees: Dow AgroSciences LLC, Sangamo Therapeutics, Inc.
    Inventors: W. Michael Ainley, Steven R. Webb, Jayakumar P. Samuel, Dmitry Y. Guschin, Jeffrey C. Miller, Lei Zhang
  • Patent number: 10174331
    Abstract: Disclosed herein are methods and compositions for homology-independent targeted insertion of donor molecules into the genome of a cell.
    Type: Grant
    Filed: May 7, 2013
    Date of Patent: January 8, 2019
    Assignees: Sangamo Therapeutics, Inc., Dow AgroSciences LLC
    Inventors: Gregory J. Cost, Fyodor Urnov, W. Michael Ainley, Joseph F. Petolino, Jayakumar Pon Samuel, Steven R. Webb, Lakshmi Sastry-Dent
  • Publication number: 20180371478
    Abstract: As disclosed herein, optimal native genomic loci of soybean plants have been identified that represent best sites for targeted insertion of exogenous sequences.
    Type: Application
    Filed: September 6, 2018
    Publication date: December 27, 2018
    Inventors: Lakshmi Sastry-Dent, Zehui Cao, Shreedharan Sriram, Steven R. Webb, Debra L. Camper, W. Michael Ainley
  • Patent number: 10160975
    Abstract: A method for producing a transgenic plant includes providing a nucleic acid molecule comprising at least two regions of nucleic acid sequence that lack sequence homology with genomic DNA of the plant cell, and at least two zinc finger nuclease recognition sites, wherein the at least two regions of nucleic acid sequence that lack sequence homology with genomic DNA of the plant cell flank the at least two zinc finger nuclease recognition sites. A plant cell or tissue having the nucleic acid molecule stably integrated into the genome of the plant cell is transformed. A plant is regenerated from the plant cell. Transgenic plants are produced by the method. Seeds are produced by the transgenic plants.
    Type: Grant
    Filed: August 12, 2014
    Date of Patent: December 25, 2018
    Assignee: Dow AgroSciences LLC
    Inventors: W. Michael Ainley, Ryan C. Blue, Michael G. Murray, David Richard Corbin, Rebecca Ruth Miles, Steven R. Webb
  • Patent number: 10106804
    Abstract: As disclosed herein, optimal native genomic loci of soybean plants have been identified that represent best sites for targeted insertion of exogenous sequences.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: October 23, 2018
    Assignee: Dow AgroSciences LLC
    Inventors: Lakshmi Sastry-Dent, Zehui Cao, Shreedharan Sriram, Steven R. Webb, Debra L. Camper, W. Michael Ainley
  • Patent number: 10087492
    Abstract: The present disclosure provides a system and methods for detecting and identifying plant events that contain donor sequences inserted precisely into a targeted genomic loci, and plants and plant cells comprising such targeted genomic loci. The method comprises the steps of amplifying a genomic DNA with a first round of PCR to produce an amplicon from donor sequences inserted in the reverse orientation, wherein the production of the amplicon indicates the presence of the site specific integration event.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: October 2, 2018
    Assignee: Dow AgroSciences LLC
    Inventors: Lakshmi Sastry-Dent, W. Michael Ainley, Jayakumar P. Samuel, Zehui Cao, Liu Shen, Cristie M. Dewes
  • Publication number: 20180223297
    Abstract: A method of gene editing or gene stacking within a FAD2 loci by cleaving, in a site directed manner, a location in a FAD2 gene in a cell, to generate a break in the FAD2 gene and then ligating into the break a nucleic acid molecule associated with one or more traits of interest is disclosed.
    Type: Application
    Filed: April 2, 2018
    Publication date: August 9, 2018
    Inventors: Noel Cogan, John Forster, Matthew Hayden, Tim Sawbridge, German Spangenberg, Steven R. Webb, Manju Gupta, W. Michael Ainley, Matthew J. Henry, Jeffrey C. Miller, Dmitry Y. Guschin