Patents by Inventor Wade Bussing

Wade Bussing has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11567890
    Abstract: In one aspect, an electronic device includes a switching circuit connected to a resistance circuit and ground, the resistance circuit connected to a port and the port configured to be connected in series to an external resistor and a supply voltage. A voltage at the port is a first voltage that is less than the supply voltage if the switching circuit is enabled to be a closed circuit and the voltage at the port is a second voltage that is equal to the supply voltage if the switching circuit is enabled to be an open circuit.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: January 31, 2023
    Assignee: Allegro MicroSystems, LLC
    Inventors: Wade Bussing, Maxwell McNally
  • Patent number: 11519939
    Abstract: A current sensor integrated circuit (IC) includes a unitary lead frame having at least one first lead having a terminal end, at least one second lead having a terminal end, and a paddle having a first surface and a second opposing surface. A semiconductor die is supported by the first surface of the paddle, wherein the at least one first lead is electrically coupled to the semiconductor die and the at least one second lead is electrically isolated from the semiconductor die. The current sensor IC further includes a first mold material configured to enclose the semiconductor die and the paddle and a second mold material configured to enclose at least a portion of the first mold material, wherein the terminal end of the at least one first lead and the terminal end of the at least one second lead are external to the second mold material.
    Type: Grant
    Filed: September 13, 2021
    Date of Patent: December 6, 2022
    Assignee: Allegro MicroSystems, LLC
    Inventors: Shixi Louis Liu, Paul A. David, Shaun D. Milano, Rishikesh Nikam, Alexander Latham, Wade Bussing, Natasha Healey, Georges El Bacha
  • Publication number: 20220137103
    Abstract: Methods and apparatus for measuring a current difference between at least two current traces in a circuit board. Each wire or trace generates a magnetic field which may then be measured by at least one magnetic field sensing element positioned on an integrated circuit, such as a current sensor integrated circuit or a differential magnetic field sensor integrated circuit. An output disconnect signal may be provided from the current sensor or differential magnetic field sensing integrated circuit to indicate that a current difference above a predetermined threshold exists in the two or more current traces.
    Type: Application
    Filed: October 29, 2020
    Publication date: May 5, 2022
    Applicant: Allegro MicroSystems, LLC
    Inventors: Robert A. Briano, Wade Bussing, Timothy A. Clark
  • Patent number: 11320466
    Abstract: Methods and apparatus for measuring a current difference between at least two current traces in a circuit board. Each wire or trace generates a magnetic field which may then be measured by at least one magnetic field sensing element positioned on an integrated circuit, such as a current sensor integrated circuit or a differential magnetic field sensor integrated circuit. An output disconnect signal may be provided from the current sensor or differential magnetic field sensing integrated circuit to indicate that a current difference above a predetermined threshold exists in the two or more current traces.
    Type: Grant
    Filed: October 29, 2020
    Date of Patent: May 3, 2022
    Assignee: Allegro MicroSystems, LLC
    Inventors: Robert A. Briano, Wade Bussing, Timothy A. Clark
  • Publication number: 20210405092
    Abstract: A current sensor integrated circuit (IC) includes a unitary lead frame having at least one first lead having a terminal end, at least one second lead having a terminal end, and a paddle having a first surface and a second opposing surface. A semiconductor die is supported by the first surface of the paddle, wherein the at least one first lead is electrically coupled to the semiconductor die and the at least one second lead is electrically isolated from the semiconductor die. The current sensor IC further includes a first mold material configured to enclose the semiconductor die and the paddle and a second mold material configured to enclose at least a portion of the first mold material, wherein the terminal end of the at least one first lead and the terminal end of the at least one second lead are external to the second mold material.
    Type: Application
    Filed: September 13, 2021
    Publication date: December 30, 2021
    Applicant: Allegro MicroSystems, LLC
    Inventors: Shixi Louis Liu, Paul A. David, Shaun D. Milano, Rishikesh Nikam, Alexander Latham, Wade Bussing, Natasha Healey, Georges El Bacha
  • Patent number: 11150273
    Abstract: A current sensor integrated circuit (IC) includes a unitary lead frame having at least one first lead having a terminal end, at least one second lead having a terminal end, and a paddle having a first surface and a second opposing surface. A semiconductor die is supported by the first surface of the paddle, wherein the at least one first lead is electrically coupled to the semiconductor die and the at least one second lead is electrically isolated from the semiconductor die. The current sensor IC further includes a first mold material configured to enclose the semiconductor die and the paddle and a second mold material configured to enclose at least a portion of the first mold material, wherein the terminal end of the at least one first lead and the terminal end of the at least one second lead are external to the second mold material.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: October 19, 2021
    Assignee: Allegro MicroSystems, LLC
    Inventors: Shixi Louis Liu, Paul A. David, Shaun D. Milano, Rishikesh Nikam, Alexander Latham, Wade Bussing, Natasha Healey, Georges El Bacha
  • Publication number: 20210223292
    Abstract: A current sensor integrated circuit (IC) includes a unitary lead frame having at least one first lead having a terminal end, at least one second lead having a terminal end, and a paddle having a first surface and a second opposing surface. A semiconductor die is supported by the first surface of the paddle, wherein the at least one first lead is electrically coupled to the semiconductor die and the at least one second lead is electrically isolated from the semiconductor die. The current sensor IC further includes a first mold material configured to enclose the semiconductor die and the paddle and a second mold material configured to enclose at least a portion of the first mold material, wherein the terminal end of the at least one first lead and the terminal end of the at least one second lead are external to the second mold material.
    Type: Application
    Filed: May 27, 2020
    Publication date: July 22, 2021
    Applicant: Allegro MicroSystems, LLC
    Inventors: Shixi Louis Liu, Paul A. David, Shaun D. Milano, Rishikesh Nikam, Alexander Latham, Wade Bussing, Natasha Healey, Georges El Bacha
  • Patent number: 10935612
    Abstract: Systems and methods described herein provide a current sensor based on magnetic field detection having multiple sensor arrangements with multiple, different sensitivity ranges. The outputs of the multiple sensor arrangements can be combined to generate a single output signal. The current sensor can include two or more sensor arrangements, each having one or more magnetic field sensing elements, and configured to sense a magnetic field in different first measurement ranges corresponding to different ranges of currents through the conductor and further configured to generate different magnetic field signals indicative of the sensed magnetic field in the respective measurement range. The current sensor can include a circuit configured to generate an output signal indicative of a combination of the different magnetic field signals that corresponds to the current through the conductor.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: March 2, 2021
    Assignees: Allegro MicroSystems, LLC, Commissariat à l'énergie atomique et aux énergies alternatives
    Inventors: Noémie Belin, Shaun D. Milano, Wade Bussing, Claude Fermon
  • Patent number: 10914765
    Abstract: A current sensor can include a lead frame. The lead frame can include a first lead and a second lead, wherein the first and second leads are coupled together at a first junction region of the lead frame, wherein the current sensor is operable to sense a magnetic field generated by a first current passing through the first junction region. The current sensor can further include a first die disposed proximate to the lead frame. The first die can include a first magnetic field sensing element disposed on a surface of the first die, a first circuit coupled to the first magnetic field sensing element for generating a first signal indicative of a first current, and a first node coupled to the first signal. The current sensor can further include a second die disposed proximate to the lead frame.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: February 9, 2021
    Assignee: Allegro MicroSystems, LLC
    Inventors: Wade Bussing, Alexander Latham
  • Publication number: 20210033646
    Abstract: A current sensor can include a lead frame. The lead frame can include a first lead and a second lead, wherein the first and second leads are coupled together at a first junction region of the lead frame, wherein the current sensor is operable to sense a magnetic field generated by a first current passing through the first junction region. The current sensor can further include a first die disposed proximate to the lead frame. The first die can include a first magnetic field sensing element disposed on a surface of the first die, a first circuit coupled to the first magnetic field sensing element for generating a first signal indicative of a first current, and a first node coupled to the first signal. The current sensor can further include a second die disposed proximate to the lead frame.
    Type: Application
    Filed: July 31, 2019
    Publication date: February 4, 2021
    Applicant: Allegro MicroSystems, LLC
    Inventors: Wade Bussing, Alexander Latham
  • Patent number: 10908190
    Abstract: Systems and methods described herein are directed towards differential current sensing a current sensor having two or more magnetic field sensing elements that are oriented to sense a magnetic field generated by a current through an external conductor in the same direction. The current sensor can be positioned such that at least one first magnetic field sensing element is vertically aligned with the external conductor and at least one second magnetic field sensing element is not vertically aligned with the external conductor. The magnetic field sensing elements may be spaced from each to measure a gradient field and can generate a magnetic field signal indicative of a distance between the respective magnetic field sensing element and the current carrying external conductor. A difference between the magnetic field signals can be determined that is indicative of the current through the external conductor.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: February 2, 2021
    Assignee: Allegro MicroSystems, LLC
    Inventors: Wade Bussing, Alexander Latham, Shaun D. Milano, Christian Feucht
  • Publication number: 20200409886
    Abstract: In one aspect, an electronic device includes a switching circuit connected to a resistance circuit and ground, the resistance circuit connected to a port and the port configured to be connected in series to an external resistor and a supply voltage. A voltage at the port is a first voltage that is less than the supply voltage if the switching circuit is enabled to be a closed circuit and the voltage at the port is a second voltage that is equal to the supply voltage if the switching circuit is enabled to be an open circuit.
    Type: Application
    Filed: June 26, 2019
    Publication date: December 31, 2020
    Applicant: Allegro MicroSystems, LLC
    Inventors: Wade Bussing, Maxwell McNally
  • Publication number: 20200057120
    Abstract: Systems and methods described herein provide a current sensor based on magnetic field detection having multiple sensor arrangements with multiple, different sensitivity ranges. The outputs of the multiple sensor arrangements can be combined to generate a single output signal. The current sensor can include two or more sensor arrangements, each having one or more magnetic field sensing elements, and configured to sense a magnetic field in different first measurement ranges corresponding to different ranges of currents through the conductor and further configured to generate different magnetic field signals indicative of the sensed magnetic field in the respective measurement range. The current sensor can include a circuit configured to generate an output signal indicative of a combination of the different magnetic field signals that corresponds to the current through the conductor.
    Type: Application
    Filed: August 20, 2018
    Publication date: February 20, 2020
    Applicants: Allegro MicroSystems, LLC, Commissariat à l'énergie atomique et aux énergies alternatives
    Inventors: Noémie Belin, Shaun D. Milano, Wade Bussing, Claude Fermon
  • Publication number: 20200025804
    Abstract: Systems and methods described herein are directed towards differential current sensing a current sensor having two or more magnetic field sensing elements that are oriented to sense a magnetic field generated by a current through an external conductor in the same direction. The current sensor can be positioned such that at least one first magnetic field sensing element is vertically aligned with the external conductor and at least one second magnetic field sensing element is not vertically aligned with the external conductor. The magnetic field sensing elements may be spaced from each to measure a gradient field and can generate a magnetic field signal indicative of a distance between the respective magnetic field sensing element and the current carrying external conductor. A difference between the magnetic field signals can be determined that is indicative of the current through the external conductor.
    Type: Application
    Filed: September 30, 2019
    Publication date: January 23, 2020
    Applicant: Allegro MicroSystems, LLC
    Inventors: Wade Bussing, Alexander Latham, Shaun D. Milano, Christian Feucht
  • Patent number: 10481181
    Abstract: Systems and methods described herein are directed towards differential current sensing a current sensor having two or more magnetic field sensing elements that are oriented to sense a magnetic field generated by a current through an external conductor in the same direction. The current sensor can be positioned such that at least one first magnetic field sensing element is vertically aligned with the external conductor and at least one second magnetic field sensing element is not vertically aligned with the external conductor. The magnetic field sensing elements may be spaced from each to measure a gradient field and can generate a magnetic field signal indicative of a distance between the respective magnetic field sensing element and the current carrying external conductor. A difference between the magnetic field signals can be determined that is indicative of the current through the external conductor.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: November 19, 2019
    Assignee: Allegro MicroSystems, LLC
    Inventors: Wade Bussing, Alexander Latham, Shaun D. Milano, Christian Feucht
  • Publication number: 20180306843
    Abstract: Systems and methods described herein are directed towards differential current sensing a current sensor having two or more magnetic field sensing elements that are oriented to sense a magnetic field generated by a current through an external conductor in the same direction. The current sensor can be positioned such that at least one first magnetic field sensing element is vertically aligned with the external conductor and at least one second magnetic field sensing element is not vertically aligned with the external conductor. The magnetic field sensing elements may be spaced from each to measure a gradient field and can generate a magnetic field signal indicative of a distance between the respective magnetic field sensing element and the current carrying external conductor. A difference between the magnetic field signals can be determined that is indicative of the current through the external conductor.
    Type: Application
    Filed: April 25, 2017
    Publication date: October 25, 2018
    Applicant: Allegro Microsystems, LLC
    Inventors: Wade Bussing, Alexander Latham, Shaun D. Milano, Christian Feucht