Patents by Inventor Wade Oberpriller

Wade Oberpriller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11854216
    Abstract: Apparatus and associated methods relate to a method of non-contact motion detection. A one-dimensional optical sensor detects motion of a target or objects on a conveyor belt through a continuous measurement of targets or objects and a real-time comparison of the pixel images captured by the one-dimensional optical sensor. In an illustrative embodiment, a one-dimensional sensor may be configured to determine motion of objects based on changes to the captured intensities of pixel images over time. The sensor may continually capture photoelectric pixel images and compare a current pixel image with a previous pixel image to determine a frame differential image value. The frame differential image value is evaluated against a predetermined threshold over a predetermined time period. Based on the evaluation, a signal is output indicating whether the objects on the conveyor belt are moving or jammed.
    Type: Grant
    Filed: October 19, 2022
    Date of Patent: December 26, 2023
    Assignee: Banner Engineering Corp.
    Inventors: Wade Oberpriller, Paul D. Bratton, Jeff Bromen
  • Patent number: 11709244
    Abstract: Apparatus and associated methods relate to enabling a radar system to use different sensing mechanisms to estimate a distance from a target based on different detection zones (e.g., far-field and near-field). In an illustrative example, a curve fitting method may be applied for near-field sensing, and a Fourier transform may be used for far-field sensing. A predetermined set of rules may be applied to select when to use the near-field sensing mechanism and when to use the far-field mechanism. The frequency of a target signal within a beat signal that has less than two sinusoidal cycles may be estimated with improved accuracy. Accordingly, the distance of a target that is within a predetermined distance range (e.g., two meters range for 24 GHz ISM band limitation) may be reliably estimated.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: July 25, 2023
    Assignee: Banner Engineering Corp.
    Inventors: Ashley Wise, Chunmei Kang, Wade Oberpriller
  • Publication number: 20230123458
    Abstract: Apparatus and associated methods relate to enabling a radar system to use different sensing mechanisms to estimate a distance from a target based on different detection zones (e.g., far-field and near-field). In an illustrative example, a curve fitting method may be applied for near-field sensing, and a Fourier transform may be used for far-field sensing. A predetermined set of rules may be applied to select when to use the near-field sensing mechanism and when to use the far-field mechanism. The frequency of a target signal within a beat signal that has less than two sinusoidal cycles may be estimated with improved accuracy. Accordingly, the distance of a target that is within a predetermined distance range (e.g., two meters range for 24 GHz ISM band limitation) may be reliably estimated.
    Type: Application
    Filed: September 29, 2020
    Publication date: April 20, 2023
    Applicant: Banner Engineering Corp.
    Inventors: Ashley Wise, Chunmei Kang, Wade Oberpriller
  • Publication number: 20230105280
    Abstract: Apparatus and associated methods relate to a method of non-contact motion detection. A one-dimensional optical sensor detects motion of a target or objects on a conveyor belt through a continuous measurement of targets or objects and a real-time comparison of the pixel images captured by the one-dimensional optical sensor. In an illustrative embodiment, a one-dimensional sensor may be configured to determine motion of objects based on changes to the captured intensities of pixel images over time. The sensor may continually capture photoelectric pixel images and compare a current pixel image with a previous pixel image to determine a frame differential image value. The frame differential image value is evaluated against a predetermined threshold over a predetermined time period. Based on the evaluation, a signal is output indicating whether the objects on the conveyor belt are moving or jammed.
    Type: Application
    Filed: October 19, 2022
    Publication date: April 6, 2023
    Applicant: Banner Engineering Corp.
    Inventors: Wade Oberpriller, Paul D. Bratton, Jeff Bromen
  • Patent number: 11521328
    Abstract: Apparatus and associated methods relate to a method of non-contact motion detection. A one-dimensional optical sensor detects motion of a target or objects on a conveyor belt through a continuous measurement of targets or objects and a real-time comparison of the pixel images captured by the one-dimensional optical sensor. In an illustrative embodiment, a one-dimensional sensor may be configured to determine motion of objects based on changes to the captured intensities of pixel images over time. The sensor may continually capture photoelectric pixel images and compare a current pixel image with a previous pixel image to determine a frame differential image value. The frame differential image value is evaluated against a predetermined threshold over a predetermined time period. Based on the evaluation, a signal is output indicating whether the objects on the conveyor belt are moving or jammed.
    Type: Grant
    Filed: October 15, 2020
    Date of Patent: December 6, 2022
    Assignee: BANNER ENGINEERING CORP
    Inventors: Wade Oberpriller, Paul D. Bratton, Jeff Bromen
  • Publication number: 20220291382
    Abstract: Apparatus and associated methods relate to detecting jams when an intensity of a reflected signal exceeds a predetermined intensity threshold and an intensity window metric based on historic intensity value(s) fails to exceed an intensity window threshold for more than a predetermined time threshold. In an illustrative example, a jam detection unit (JDU) may emit a signal and detect a reflection of the signal. The JDU may, for example, compare intensity of the reflected signal to the intensity threshold. The JDU, for example, may compare the intensity threshold with at least one historic intensity value to determine the intensity window metric. If the intensity value exceeds the intensity threshold and the intensity window metric has not exceeded the intensity window threshold for longer than the time threshold, then the JDU may, for example, generate a jam signal. Various embodiments may advantageously detect jams based on intensity of a reflected signal.
    Type: Application
    Filed: March 8, 2022
    Publication date: September 15, 2022
    Applicant: Banner Engineering Corp.
    Inventors: Wade Oberpriller, Kathryn Grant Phillips Longley
  • Publication number: 20220291384
    Abstract: Apparatus and associated methods relate to a field-adjustable distance sensor configured to translate a transfer function of the sensor by a substantially constant value in a position domain by calibration at one or more known distances. In an illustrative example, the transfer function may correlate multiple distances to corresponding position vectors describing a position of a light signal on a receiver. The receiver may, for example, generate a detection signal corresponding to a position on the receiver of a light signal reflected off a target. A control circuit may, for example, generate a position vector in response to the detection signal. A calibration constant (C) may be generated, for example, as a function of a known distance of the target and position vector. C may be applied, for example, to translate the transfer function in the position domain. Various embodiments may advantageously reduce non-linear error in a distance sensor.
    Type: Application
    Filed: May 19, 2021
    Publication date: September 15, 2022
    Applicant: Banner Engineering Corp.
    Inventor: Wade Oberpriller
  • Publication number: 20210118154
    Abstract: Apparatus and associated methods relate to a method of non-contact motion detection. A one-dimensional optical sensor detects motion of a target or objects on a conveyor belt through a continuous measurement of targets or objects and a real-time comparison of the pixel images captured by the one-dimensional optical sensor. In an illustrative embodiment, a one-dimensional sensor may be configured to determine motion of objects based on changes to the captured intensities of pixel images over time. The sensor may continually capture photoelectric pixel images and compare a current pixel image with a previous pixel image to determine a frame differential image value. The frame differential image value is evaluated against a predetermined threshold over a predetermined time period. Based on the evaluation, a signal is output indicating whether the objects on the conveyor belt are moving or jammed.
    Type: Application
    Filed: October 15, 2020
    Publication date: April 22, 2021
    Applicant: Banner Engineering Corp.
    Inventors: Wade Oberpriller, Paul D. Bratton, Jeff Bromen