Patents by Inventor Wala Algozeeb

Wala Algozeeb has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240100502
    Abstract: Rigid porous polymeric carbon sorbents, including particularly polymeric carbon sorbents for CO2 capture for flue gas from power plants and for gases from other post combustion CO2 emission outlets, and methods of making and using same. The porous carbon material can be prepared by heating plastic with an additive. The additive can be selected from metal hydroxide, metal oxalate, metal acetate, metal acetylacetonoate or mixtures thereof. By controlling the preparation, such as the temperature of preparation, the porous carbon sorbent can be controlled to be rigid.
    Type: Application
    Filed: October 14, 2020
    Publication date: March 28, 2024
    Applicant: WILLIAM MARSH RICE UNIVERSITY
    Inventors: James M. Tour, Wala Algozeeb, Paul E. Savas, Jr., Wilbur Carter Kittrell
  • Publication number: 20210206642
    Abstract: Methods for the synthesis of graphene, and more particularly the method of synthesizing graphene by flash Joule heating (FJH). Such methods can be used to synthesize turbostratic graphene (including low-defect turbostratic graphene) in bulk quantities. Such methods can further be used to synthesize composite materials and 2D materials.
    Type: Application
    Filed: August 23, 2019
    Publication date: July 8, 2021
    Applicant: WILLIAM MARSH RICE UNIVERSITY
    Inventors: James Mitchell Tour, Duy X. Luong, Wilbur Carter Kittrell, Wala A. Algozeeb, Weiyin Chen
  • Publication number: 20180244591
    Abstract: Embodiments of methods for converting gas condensate into a product stream comprising propylene comprise feeding gas condensate at a top region of a downflow high severity fluidized catalytic cracking reactor (HSFCC), where the gas condensate comprises: at least 50% by weight paraffins, and less than 0.1% by weight olefins. The method further comprises feeding catalyst to the top region of the downflow HSFCC reactor in an amount characterized by a catalyst to gas condensate weight ratio of about 5:1 to about 40:1, where the catalyst comprises nano-ZSM-5 zeolite catalyst having an average particle diameter from 0.01 to 0.2 ?m, a Si/Al molar ratio from 20 to 40, and a surface area of at least 20 cm2/g. The method further comprises cracking the gas condensate in the presence of the catalyst at a reaction temperature of about 500° C. to about 700° C. to produce the product stream comprising propylene.
    Type: Application
    Filed: May 1, 2018
    Publication date: August 30, 2018
    Inventors: Mansour Ali Al-Herz, Nathan D. Hould, Ahmed Al-Asseel, Wala A. Algozeeb, Musaed Al-Ghrami
  • Patent number: 10059642
    Abstract: Embodiments of methods for converting gas condensate into a product stream comprising propylene comprise feeding gas condensate at a top region of a downflow high severity fluidized catalytic cracking reactor (HSFCC), where the gas condensate comprises: at least 50% by weight paraffins, and less than 0.1% by weight olefins. The method further comprises feeding catalyst to the top region of the downflow HSFCC reactor in an amount characterized by a catalyst to gas condensate weight ratio of about 5:1 to about 40:1, where the catalyst comprises nano-ZSM-5 zeolite catalyst having an average particle diameter from 0.01 to 0.2 ?m, a Si/Al molar ratio from 20 to 40, and a surface area of at least 20 cm2/g. The method further comprises cracking the gas condensate in the presence of the catalyst at a reaction temperature of about 500° C. to about 700° C. to produce the product stream comprising propylene.
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: August 28, 2018
    Assignee: Saudi Arabian Oil Company
    Inventors: Mansour Ali Al-Herz, Nathan D. Hould, Ahmed Al-Asseel, Wala A. Algozeeb, Musaed Al-Ghrami
  • Patent number: 9981888
    Abstract: Embodiments of methods for converting gas condensate into a product stream comprising propylene comprise feeding gas condensate at a top region of a downflow high severity fluidized catalytic cracking reactor (HSFCC), where the gas condensate comprises: at least 50% by weight paraffins, and less than 0.1% by weight olefins. The method further comprises feeding catalyst to the top region of the downflow HSFCC reactor in an amount characterized by a catalyst to gas condensate weight ratio of about 5:1 to about 40:1, where the catalyst comprises nano-ZSM-5 zeolite catalyst having an average particle diameter from 0.01 to 0.2 ?m, a Si/Al molar ratio from 20 to 40, and a surface area of at least 20 cm2/g. The method further comprises cracking the gas condensate in the presence of the catalyst at a reaction temperature of about 500° C. to about 700° C. to produce the product stream comprising propylene.
    Type: Grant
    Filed: June 23, 2016
    Date of Patent: May 29, 2018
    Assignee: Saudi Arabian Oil Company
    Inventors: Mansour Ali Al-Herz, Nathan D. Hould, Ahmed Al-Asseel, Wala A. Algozeeb, Musaed Al-Ghrami
  • Publication number: 20170369397
    Abstract: Embodiments of methods for converting gas condensate into a product stream comprising propylene comprise feeding gas condensate at a top region of a downflow high severity fluidized catalytic cracking reactor (HSFCC), where the gas condensate comprises: at least 50% by weight paraffins, and less than 0.1% by weight olefins. The method further comprises feeding catalyst to the top region of the downflow HSFCC reactor in an amount characterized by a catalyst to gas condensate weight ratio of about 5:1 to about 40:1, where the catalyst comprises nano-ZSM-5 zeolite catalyst having an average particle diameter from 0.01 to 0.2 ?m, a Si/Al molar ratio from 20 to 40, and a surface area of at least 20 cm2/g. The method further comprises cracking the gas condensate in the presence of the catalyst at a reaction temperature of about 500° C. to about 700° C. to produce the product stream comprising propylene.
    Type: Application
    Filed: June 23, 2016
    Publication date: December 28, 2017
    Inventors: Mansour Ali Al-Herz, Nathan D. Hould, Ahmed Al-Asseel, Wala A. Algozeeb, Musaed Al-Ghrami