Patents by Inventor Wallace Kunimoto

Wallace Kunimoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8115487
    Abstract: A magnetic resonance imaging system includes a primary magnet and a secondary magnet operable to produce magnetic fields within a sample being imaged. The MRI system further includes at least one RF coil that is operable to receive electromagnetic frequencies from the sample. The RF coil is formed from tubing that serves as a cooling conduit through which flows a cooling fluid provided by a cooling source. The cooling fluid cools the RF coils to improve imaging of the sample.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: February 14, 2012
    Assignee: m2m Imaging Corporation
    Inventors: Jon T. DeVries, Erzhen Gao, Wallace Kunimoto
  • Publication number: 20100280361
    Abstract: A magnetic resonance imaging system includes a primary magnet and a secondary magnet operable to produce magnetic fields within a sample being imaged. The MRI system further includes at least one RF coil that is operable to receive electromagnetic frequencies from the sample. The RF coil is formed from tubing that serves as a cooling conduit through which flows a cooling fluid provided by a cooling source. The cooling fluid cools the RF coils to improve imaging of the sample.
    Type: Application
    Filed: July 19, 2010
    Publication date: November 4, 2010
    Applicant: m2m Imaging Corp.
    Inventors: Jon T. DeVries, Erzhen Gao, Wallace Kunimoto
  • Patent number: 7759935
    Abstract: A magnetic resonance imaging system (10) includes a primary magnet and a secondary magnet operable to produce magnetic fields within a sample being imaged. The MRI system further includes at least one RF coil (50) that is operable to receive electromagnetic frequencies from the sample. The RF coil is formed from tubing (221) that serves as a cooling conduit through which flows a cooling fluid provided by a cooling source. The cooling fluid cools the RF coils to improve imaging of the sample.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: July 20, 2010
    Assignee: m2m Imaging Corp.
    Inventors: Jon T. DeVries, Erzhen Gao, Wallace Kunimoto
  • Publication number: 20090021255
    Abstract: A magnetic resonance imaging system (10) includes a primary magnet and a secondary magnet operable to produce magnetic fields within a sample being imaged. The MRI system further includes at least one RF coil (50) that is operable to receive electromagnetic frequencies from the sample. The RF coil is formed from tubing (221) that serves as a cooling conduit through which flows a cooling fluid provided by a cooling source. The cooling fluid cools the RF coils to improve imaging of the sample.
    Type: Application
    Filed: November 22, 2005
    Publication date: January 22, 2009
    Applicant: m2m Imaging Corp.
    Inventors: Jon T. DeVries, Erzhen Gao, Wallace Kunimoto
  • Publication number: 20070257674
    Abstract: A magnetic resonance coil system 18 allows for the use of modular components and which in one embodiment is particularly well-suited for use with small animals and includes an animal receiving apparatus 202, a transmit coil module 204, and a receive coil module 206. The receive coil module 206 includes a cryogenic receive coil. The coil system 18 is selectively insertable in the bore of the gradient coil of a magnetic resonance examination system.
    Type: Application
    Filed: May 5, 2006
    Publication date: November 8, 2007
    Applicant: Supertron Technologies, Inc.
    Inventors: Erzhen Gao, Jon DeVries, C. Hullihen, Wallace Kunimoto, Timothy James
  • Patent number: 6590471
    Abstract: An electrical interconnect provides a path between cryogenic or cryocooled circuitry and ambient temperatures. As a system, a cryocable 10 is combined with a trough-line contact or transition 20. In the preferred embodiment, the cryocable 10 comprises a conductor 11 disposed adjacent an insulator 12 which is in turn disposed adjacent another conductor 13. The components are sized so as to balance heat load through the cryocable 10 with the insertion loss. In the most preferred embodiment, a coaxial cryocable 10 has a center conductor 11 surrounded by a dielectric 12 (e.g. Teflon™) surrounded by an outer conductor 13 which has a thickness between about 6 and 20 microns. The heat load is preferably less than one Watt, and most preferably less than one tenth of a Watt, with an insertion loss less than one decibel.
    Type: Grant
    Filed: October 5, 2000
    Date of Patent: July 8, 2003
    Assignee: Superconductor Technologies, Inc.
    Inventors: Michael J. Scharen, Wallace Kunimoto, Angela May Ho
  • Patent number: 6154103
    Abstract: An electrical interconnect provides a path between cryogenic or cryocooled circuitry and ambient temperatures. As a system, a cryocable 10 is combined with a trough-line contact or transition 20. In the preferred embodiment, the cryocable 10 comprises a conductor 11 disposed adjacent an insulator 12 which is in turn disposed adjacent another conductor 13. The components are sized so as to balance heat load through the cryocable 10 with the insertion loss. In the most preferred embodiment, a coaxial cryocable 10 has a center conductor 11 surrounded by a dielectric 12 (e.g. Teflon.TM.) surrounded by an outer conductor 13 which has a thickness between about 6 and 20 microns. The heat load is preferably less than one Watt, and most preferably less than one tenth of a Watt, with an insertion loss less than one decibel. In another aspect of the invention, a trough-line contact or transition 20 is provided in which the center conductor 11 is partially enveloped by dielectric 12 to form a relatively flat portion 28.
    Type: Grant
    Filed: October 15, 1998
    Date of Patent: November 28, 2000
    Assignee: Superconductor Technologies, Inc.
    Inventors: Michael J. Scharen, Wallace Kunimoto, Angela May Ho
  • Patent number: 5857342
    Abstract: A temperature controlled cryogenic package system for efficiently and precisely monitoring and controlling the operating temperature of a high temperature superconductor circuit placed on a substrate. The cryogenic package system comprises a heating element formed on the same substrate as the high temperature superconductor circuit, a control circuit capable of activating and deactivating the heating element, and a temperature sensor placed in thermal proximity to the high temperature superconductor circuit. The temperature sensor monitors the operating temperature of the high temperature superconductor circuit, and conveys temperature information to the control circuit. The control circuit activates or deactivates the heating element according to the warming or cooling effect that is necessary in order to maintain the high temperature superconductor circuit within a predetermined temperature range, where the range of temperature fluctuation is within plus or minus 0.1 K of a predetermined temperature.
    Type: Grant
    Filed: February 10, 1998
    Date of Patent: January 12, 1999
    Assignee: Superconductor Technologies, Inc.
    Inventors: Stephan M. Rohlfing, Roger J. Forse, Michael J. Scharen, Wallace Kunimoto
  • Patent number: 5818097
    Abstract: A temperature controlled cryogenic package system for efficiently and precisely monitoring and controlling the operating temperature of a high temperature superconductor circuit placed on a substrate. The cryogenic package system comprises a heating element formed on the same substrate as the high temperature superconductor circuit, a control circuit capable of activating and deactivating the heating element, and a temperature sensor placed in thermal proximity to the high temperature superconductor circuit. The temperature sensor monitors the operating temperature of the high temperature superconductor circuit, and conveys temperature information to the control circuit. The control circuit activates or deactivates the heating element according to the warming or cooling effect that is necessary in order to maintain the high temperature superconductor circuit within a predetermined temperature range, where the range of temperature fluctuation is within plus or minus 0.1 K of a predetermined temperature.
    Type: Grant
    Filed: January 5, 1995
    Date of Patent: October 6, 1998
    Assignee: Superconductor Technologies, Inc.
    Inventors: Stephan M. Rohlfing, Roger J. Forse, Michael J. Scharen, Wallace Kunimoto