Patents by Inventor Wallace T. Y. Tang

Wallace T. Y. Tang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7582183
    Abstract: A technique and apparatus is disclosed for the optical monitoring and measurement of a thin film (or small region on a surface) undergoing thickness and other changes while it is rotating. An optical signal is routed from the monitored area through the axis of rotation and decoupled from the monitored rotating area. The signal can then be analyzed to determine an endpoint to the planarization process. The invention utilizes interferometric and spectrophotometric optical measurement techniques for the in situ, real-time endpoint control of chemical-mechanical polishing planarization in the fabrication of semiconductor or various optical devices. The apparatus utilizes a bifurcated fiber optic cable to monitor changes on the surface of the thin film.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: September 1, 2009
    Assignee: Applied Materials, Inc.
    Inventor: Wallace T. Y. Tang
  • Patent number: 7569119
    Abstract: A technique and apparatus is disclosed for the optical monitoring and measurement of a thin film (or small region on a surface) undergoing thickness and other changes while it is rotating. An optical signal is routed from the monitored area through the axis of rotation and decoupled from the monitored rotating area. The signal can then be analyzed to determine an endpoint to the planarization process. The invention utilizes interferometric and spectrophotometric optical measurement techniques for the in situ, real-time endpoint control of chemical-mechanical polishing planarization in the fabrication of semiconductor or various optical devices. The apparatus utilizes a bifurcated fiber optic cable to monitor changes on the surface of the thin film.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: August 4, 2009
    Assignee: Applied Materials, Inc.
    Inventor: Wallace T. Y. Tang
  • Patent number: 7037403
    Abstract: A technique and apparatus is disclosed for the optical monitoring and measurement of a thin film (or small region on a surface) undergoing thickness or other changes while it is rotating. An optical signal is routed from the monitored area through the axis of rotation and decoupled from the monitored rotating area. The signal can then be analyzed to determine an endpoint to the planarization process. The invention utilizes interferometric and spectrophotometric optical measurement techniques for the in situ, real-time endpoint control of chemical-mechanical polishing planarization in the fabrication of semiconductor or various electrical devices.
    Type: Grant
    Filed: August 14, 1998
    Date of Patent: May 2, 2006
    Assignee: Applied Materials Inc.
    Inventor: Wallace T. Y. Tang
  • Patent number: 7024063
    Abstract: A technique and apparatus is disclosed for the optical monitoring and measurement of a thin film (or small region on a surface) undergoing thickness and other changes while it is rotating. An optical signal is routed from the monitored area through the axis of rotation and decoupled from the monitored rotating area. The signal can then be analyzed to determine an endpoint to the planarization process. The invention utilizes interferometric and spectrophotometric optical measurement techniques for the in situ, real-time endpoint control of chemical-mechanical polishing planarization in the fabrication of semiconductor or various optical devices. The apparatus utilizes a bifurcated fiber optic cable to monitor changes on the surface of the thin film.
    Type: Grant
    Filed: January 25, 2005
    Date of Patent: April 4, 2006
    Assignee: Applied Materials Inc.
    Inventor: Wallace T. Y. Tang
  • Patent number: 6849152
    Abstract: A technique and apparatus is disclosed for the optical monitoring and measurement of a thin film (or small region on a surface) undergoing thickness and other changes while it is rotating. An optical signal is routed from the monitored area through the axis of rotation and decoupled from the monitored rotating area. The signal can then be analyzed to determine an endpoint to the planarization process. The invention utilizes interferometric and spectrophotometric optical measurement techniques for the in situ, real-time endpoint control of chemical-mechanical polishing planarization in the fabrication of semiconductor or various optical devices. The apparatus utilizes a bifurcated fiber optic cable to monitor changes on the surface of the thin film.
    Type: Grant
    Filed: July 19, 2001
    Date of Patent: February 1, 2005
    Assignee: Applied Materials, Inc.
    Inventor: Wallace T. Y. Tang
  • Patent number: 6614529
    Abstract: A technique and apparatus is disclosed for the optical monitoring and measurement of a thin film (or small region on a surface) undergoing thickness and other changes while it is rotating. An optical signal is routed from the monitored area through the axis of rotation and decoupled from the monitored rotating area. The signal can then be analyzed to determine an endpoint to the planarization process. The invention utilizes interferometric and spectrophotometric optical measurement techniques for the in situ, real-time endpoint control of chemical-mechanical polishing planarization in the fabrication of semiconductor or various optical devices.
    Type: Grant
    Filed: December 28, 1992
    Date of Patent: September 2, 2003
    Assignee: Applied Materials, Inc.
    Inventor: Wallace T. Y. Tang
  • Publication number: 20020013058
    Abstract: A technique and apparatus is disclosed for the optical monitoring and measurement of a thin film (or small region on a surface) undergoing thickness and other changes while it is rotating. An optical signal is routed from the monitored area through the axis of rotation and decoupled from the monitored rotating area. The signal can then be analyzed to determine an endpoint to the planarization process. The invention utilizes interferometric and spectrophotometric optical measurement techniques for the in situ, real-time endpoint control of chemical-mechanical polishing planarization in the fabrication of semiconductor or various optical devices. The apparatus utilizes a bifurcated fiber optic cable to monitor changes on the surface of the thin film.
    Type: Application
    Filed: July 19, 2001
    Publication date: January 31, 2002
    Applicant: Applied materials, Inc., a Delaware corporation
    Inventor: Wallace T. Y. Tang
  • Patent number: 5949927
    Abstract: A technique and apparatus is disclosed for the optical monitoring and measurement of a thin film (or small region on a surface) undergoing thickness and other changes while it is rotating. An optical signal is routed from the monitored area through the axis of rotation and decoupled from the monitored rotating area. The signal can then be analyzed to determine an endpoint to the planarization process. The invention utilizes interferometric and spectrophotometric optical measurement techniques for the in situ, real-time endpoint control of chemical-mechanical polishing planarization in the fabrication of semiconductor or various optical devices. The apparatus utilizes a bifurcated fiber optic cable to monitor changes on the surface of the thin film.
    Type: Grant
    Filed: March 9, 1995
    Date of Patent: September 7, 1999
    Inventor: Wallace T. Y. Tang