Patents by Inventor Walter A. Johnson

Walter A. Johnson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 4884754
    Abstract: A process is disclosed for producing fine copper flakes which comprises media milling copper powder particles with one or more organic surfactants in a non-polar organic medium to comminute the copper particles and produce intermediate flakes having a thickness of less than about 3 micrometers, removing the major portion of the organic medium and the organic surfactants from the intermediate flakes to produce dried intermediate flakes, and fluid energy milling the intermediate flakes to reduce the diameter of the dried intermediate flakes and produce flakes having a diameter of no greater than about 10 micrometers in diameter.
    Type: Grant
    Filed: January 3, 1989
    Date of Patent: December 5, 1989
    Assignee: GTE Products Corporation
    Inventors: Preston B. Kemp, Jr., Walter A. Johnson
  • Patent number: 4885028
    Abstract: A process for forming particulate tungsten heavy alloys from agglomerated material containing the individual metals by using a high temperature zone is improved by retaining the material in the high temperature zone for a time sufficient to at least partially melt the metals that are alloying with tungsten while maintaining the temperature of those metals below the boiling point of the lowest boiling metal in the alloying component.
    Type: Grant
    Filed: October 3, 1988
    Date of Patent: December 5, 1989
    Assignee: GTE Products Corporation
    Inventors: Nelson E. Kopatz, Walter A. Johnson, Jack E. Vanderpool, Howard H. Shaw
  • Patent number: 4880170
    Abstract: Copper powder with enhanced sinterability and process for producing same is disclosed which comprises fluid energy milling dendritic copper powder particles having a mean particle size of no greater than about 25 micrometers in diameter to produce a deagglomerated cold-worked powder wherein the particles are essentially equiaxed in shape and are of a mean particle size of no greater than about 7 micrometers in diameter.
    Type: Grant
    Filed: January 3, 1989
    Date of Patent: November 14, 1989
    Assignee: GTE Products Corporation
    Inventors: Preston B. Kemp, Jr., Walter A. Johnson
  • Patent number: 4859237
    Abstract: A process for producing a blend of maraging steel alloys and an oxidizable metal comprises forming an aqueous solution or iron, cobalt, nickel and molybdenum in a predetermined ratio. Thereafter, a reducible solid material containing the metals is produced from the solution. The solid material is reduced to metallic powder particles which are entrained in a carrier gas and fed into a high temperature zone to form droplets which are cooled to form essentially spherical shaped metal alloy particles. These particles are combined with a predetermined amount of at least one easily oxidizable metal selected from the group consisting of aluminum, titanium and vanadium to form a relative uniform blend of the spherical shaped particles and the readily oxidizable metal.
    Type: Grant
    Filed: January 4, 1988
    Date of Patent: August 22, 1989
    Assignee: GTE Products Corporation
    Inventors: Walter A. Johnson, Nelson E. Kopatz, Joseph E. Ritsko
  • Patent number: 4853861
    Abstract: The present invention comprises a system for detecting windshear and associated downdraft effects when they are encountered in flight by an aircraft. The system includes an input unit (12), a first processing unit (14), a second processing unit (16), an output unit (18), and a pilot warning device (20). The input unit receives aircraft performance data from the instruments and/or flight systems on the aircraft and preconditions this data to produce a set of signals corresponding to various aerodynamic and inertial input parameters. The first processing unit differences signals representing the aerodynamically derived and inertially derived accelerations of the aircraft in order to generate windshear signals. These windshear signals are then corrected for pitch rate induced coriolis acceleration effects. The corrected signals are used to form a signals representing longitudinal windshear along the horizontal heading axis of the aircraft and the change in aircraft climb gradient due to longitudinal windshear.
    Type: Grant
    Filed: September 1, 1987
    Date of Patent: August 1, 1989
    Assignee: Flight Dynamics, Inc.
    Inventors: Douglas W. Ford, Walter A. Johnson, Shahram Daneshmandi
  • Patent number: 4847045
    Abstract: A process is disclosed for producing a sheet of tungsten heavy alloy which involves uniformly blending elemental metal powder components of the alloy by forming a slurry of the powder components in a liquid medium, introducing the slurry onto a filter medium and applying vacuum to the bottom of the slurry to form a planar cake of the powder components. The cake is then dried and sintered to a density equal to or greater than about 90% of the theoretical density of the alloy to form the sheet.
    Type: Grant
    Filed: February 29, 1988
    Date of Patent: July 11, 1989
    Assignee: GTE Products Corporation
    Inventors: Preston B. Kemp, Jr., Walter A. Johnson
  • Patent number: 4836850
    Abstract: A powdered material and a process for producing the material are disclosed. The powdered material consists essentially of iron group based and chromium based spherical particles. The material is essentially free of elliptical shaped material and elongated particles having rounded ends. The material has a particle size of less than about 20 micrometers. The process for making the spherical particles involves mechanically reducing the size of a starting material to produce a finer powder the major portion of which has a particle size of less than about 20 micrometers. The finer powder is entrained in a carrier gas and passed through a high temperature zone at a temperature above the melting point of the powder to melt at least about 50% by weight of the powder and form the spherical particles of the melted portion. The powder is then directly solidified.
    Type: Grant
    Filed: November 16, 1987
    Date of Patent: June 6, 1989
    Assignee: GTE Products Corporation
    Inventors: Preston B. Kemp, Jr., Walter A. Johnson
  • Patent number: 4832907
    Abstract: A process is disclosed for producing a sheet of tungsten heavy alloy which involves uniformly blending elemental powder components of the alloy by forming a slurry of the powder components in a liquid medium, removing the liquid medium from the powders and forming a planar cake of the powders, drying the cake, sintering the cake to a density equal to or greater than about 90% of the theoretical density of the alloy to form the sheet.
    Type: Grant
    Filed: January 14, 1988
    Date of Patent: May 23, 1989
    Assignee: GTE Products Corporation
    Inventors: Walter A. Johnson, Preston B. Kemp, Jr., James R. Spencer
  • Patent number: 4802915
    Abstract: Alloys of a first group of metals containing at least one iron group metal and one or more easily oxidizable metals can be formed by forming an aqueous solution of the first group of metals, forming solids containing the metals from the solution, reducing the solids to a metallic powder, converting the metallic powder to metallic alloy spherical powders, agglomeration the spherical powder with one or more easily oxidizable metals in a non-oxidizing atmosphere, thereafter the agglomerates are subjected to a sufficient temperatures under non-oxidizing conditions to form an alloy. Alternatively, the easily oxidizable metals can be agglomerated with the solids containing the iron group metal prior to converting the agglomerates to a spherical alloy powder.
    Type: Grant
    Filed: April 25, 1988
    Date of Patent: February 7, 1989
    Assignee: GTE Products Corporation
    Inventors: Nelson E. Kopatz, Joseph E. Ritsko, Walter A. Johnson
  • Patent number: 4800064
    Abstract: A process is disclosed for producing a sheet of tungsten heavy alloy which involves forming a solution of chemical compounds containing the metal values of the alloy in the correct proportion as in the alloy, crystallizing the compounds from solution and drying the compounds, reducing the compounds to their respective metals wherein each particle is an admixture of the allow components; forming a slurry of the metals and a liquid medium, removing the liquid medium from the metals and forming a planar cake of the metals, drying the cake, and sintering the cake to a density equal to or greater than about 90% of the theoretical density of the alloy to form the sheet.
    Type: Grant
    Filed: January 14, 1988
    Date of Patent: January 24, 1989
    Assignee: GTE Products Corporation
    Inventors: Preston B. Kemp, Jr., Walter A. Johnson, Nelson E. Kopatz
  • Patent number: 4793969
    Abstract: A process is disclosed for producing a sheet of tungsten heavy alloy which comprises forming metal particles of the alloy wherein each metal particle is a uniform admixture of the alloy components, entraining the particles in a carrier gas, passing the particles and the carrier gas into a high temperature zone at a temperature above the melting point of the matrix phase of the particles and maintaining the particles in the zone for a sufficient time to melt at least the matrix phase of the particles and form spherical particles, followed by rapidly and directly solidifying the high temperature treated material while the material is in flight. A slurry is formed of this high temperature treated material and a liquid medium, the liquid medium is removed from the material and a planar cake is formed of the material, the cake is dried, and sintered to a density equal to or greater than about 90% of the theoretical density of the alloy to form the sheet.
    Type: Grant
    Filed: January 14, 1988
    Date of Patent: December 27, 1988
    Assignee: GTE Products Corporation
    Inventors: Walter A. Johnson, Preston B. Kemp, Jr., Nelson E. Kopatz
  • Patent number: 4792351
    Abstract: A process for producing powder particles comprises forming an aqueous solution of the metal values of iron, cobalt, nickel and molybdenum, said metals being present in a predetermined ratio, forming from the solution a reducible solid material selected from the group consisting of salts of said metals, oxides of said metals, hydroxides of said metals and mixtures thereof, and reducing said material to form irregular shaped metallic powder particles.
    Type: Grant
    Filed: January 4, 1988
    Date of Patent: December 20, 1988
    Assignee: GTE Products Corporation
    Inventors: Walter A. Johnson, Nelson E. Kopatz, Joseph E. Ritsko
  • Patent number: 4787934
    Abstract: A process for forming maraging steel alloys comprise forming an aqueous solution containing the metal values of iron, cobalt, nickel and molybdenum in a predetermined ratio, forming the reducible solid material from the solution, reducing the solid material to form metallic powder particles. These particles are entrained in a carrier gas and fed into a high temperature zone to form droplets. The droplets are cooled to form essentially spherical particles which are agglomerated with a predetermined amount of at least one readily oxidizable metal selected from the group consisting of aluminum, titanium and vanadium. The agglomerates are entrained in a carrier gas and fed into a high temperature zone to form droplets which are thereafter cooled to form essentially spherical shaped particles of a maraging steel alloy containing at least one readily oxidizable metal.
    Type: Grant
    Filed: January 4, 1988
    Date of Patent: November 29, 1988
    Assignee: GTE Products Corporation
    Inventors: Walter A. Johnson, Nelson E. Kopatz, Joseph E. Ritsko
  • Patent number: 4783214
    Abstract: A powder material and a process for producing the material are disclosed. The powder material consists essentially of spherical particles selected from the group consisting of metals, metal alloys, ceramic glasses, crystalline ceramic materials, and combinations thereof. The material is essentially free of elliptical shaped material and elongated particles having rounded ends. The material has a particle size of less than about 20 micrometers in diameter and has an oxygen content of less than about 0.8% by weight. The process for making the spherical particles involves reducing the size of a starting material to produce a finer powder essentially all of which has a particle size of less than about 20 micrometers in diameter. This is done by fluid energy milling. The finer powder is entrained in a carrier gas and passed through a high temperature zone at a temperature above the melting point of the powder, the temperature being from about 5500.degree. C. to about 17,000.degree. C.
    Type: Grant
    Filed: February 29, 1988
    Date of Patent: November 8, 1988
    Assignee: GTE Products Corporation
    Inventors: Preston B. Kemp, Jr., Walter A. Johnson
  • Patent number: 4783218
    Abstract: A powdered material and a process for producing the material are disclosed. The powdered material consists essentially of refractory metal based spherical particles and is essentially free of elliptical shaped material and elongated particles having rounded ends. The process for making the spherical particles involves mechanically reducing the size of a starting material to produce a finer powder which is then entrained in a carrier gas and passed through a high temperature zone at a temperature above the melting point of the finer powder to melt at least about 50% by weight of the powder and form the spherical particles of the melted portion. The powder is then directly solidified.
    Type: Grant
    Filed: September 8, 1986
    Date of Patent: November 8, 1988
    Assignee: GTE Products Corporation
    Inventors: Preston B. Kemp, Jr., Walter A. Johnson
  • Patent number: 4783215
    Abstract: A powder material and a process for producing the material are disclosed. The powder material consists essentially of iron group based and chromium based spherical particles. The material is essentially free of elliptical shaped material and elongated particles having rounded ends. The material has a particle size of less than about 20 micrometers in diameter and has an oxygen content of less than about 0.8% by weight. The process for making the spherical particles involves reducing the size of a starting material to produce a finer powder essentially all of which has a particle size of less than about 20 micrometers in diameter. This is done by fluid energy milling. The finer powder is entrained in a carrier gas and passed through a high temperature zone at a temperature above the melting point of the powder, the temperature being from about 5500.degree. C. to about 17,000.degree. C.
    Type: Grant
    Filed: February 29, 1988
    Date of Patent: November 8, 1988
    Assignee: GTE Products Corporation
    Inventors: Preston B. Kemp, Jr., Walter A. Johnson
  • Patent number: 4783216
    Abstract: A powdered material and a process for producing the material are disclosed. The powdered material consists essentially of titanium based spherical particles which are essentially free of elliptical shaped material and elongated particles having rounded ends. The material has a particle size of less than about 50 micrometers. The process for making the spherical particles involves mechanically reducing the size of a starting material to produce a finer powder which is then entrained in a carrier gas and passed through a high temperature zone above the melting point of the finer powder to melt at least about 50% by weight of the powder and form spherical particles of the melted portion. The powder is then directly solidified.
    Type: Grant
    Filed: September 8, 1986
    Date of Patent: November 8, 1988
    Assignee: GTE Products Corporation
    Inventors: Preston B. Kemp, Jr., Walter A. Johnson
  • Patent number: 4781741
    Abstract: A process is disclosed for producing spherical glass particles. The process involves forming a high velocity stream of molten droplets of glass, directing said stream toward a repellent surface, impacting the molten droplets against the surface to form fragmented portions, and cooling the fragmented portions to form a glass powder consisting essentially of particles the major portion of which are glass spheres.
    Type: Grant
    Filed: September 28, 1987
    Date of Patent: November 1, 1988
    Assignee: GTE Products Corporation
    Inventors: Walter A. Johnson, Nelson E. Kopatz, Lori S. Pruyne
  • Patent number: 4780131
    Abstract: A powdered material and a process for producing the material are disclosed. The powdered material consists essentially of light metal based spherical particles which are essentially free of elliptical shaped material and elongated particles having rounded ends. The process for making the spherical particles involves mechanically reducing the size of a starting material to produce a finer powder which is then entrained in a carrier gas and passed through a high temperature zone above the melting point of the finer powder to melt at least about 50% by weight of the powder and form spherical particles of the melted portion. The powder is directly solidified.
    Type: Grant
    Filed: September 8, 1986
    Date of Patent: October 25, 1988
    Assignee: GTE Products Corporation
    Inventors: Preston B. Kemp, Jr., Walter A. Johnson
  • Patent number: 4778517
    Abstract: A process for producing finely divided spherical copper copper alloy powders comprises forming an aqueous solution of copper and alternatively other metal values forming a reducible metallic material from the solution, reducing the material to metal powder particles, subjecting the metal particles to a high temperature zone to melt a portion of the metal powder particles and to form droplets and cooling the droplets to form an essential spherical metal alloy particles.
    Type: Grant
    Filed: May 27, 1987
    Date of Patent: October 18, 1988
    Assignee: GTE Products Corporation
    Inventors: Nelson E. Kopatz, Walter A. Johnson