Patents by Inventor Walter Dean Gillespie

Walter Dean Gillespie has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120245695
    Abstract: A spinal implant which is configured to be deployed between adjacent vertebral bodies. The implant has at least one extendable support element with a retracted configuration to facilitate deployment of the implant and an extended configuration so as to expand the implant and effectively distract the disc space, stabilize the motion segments and eliminate pathologic spine motion. Angular deformities can also be corrected, and natural curvatures restored. Preferably, the implant has a minimal dimension in its unexpanded state that is smaller than the dimensions of the neuroforamen through which it typically passes to be deployed within the intervertebral space. The implant is provided with a locking system preferably having a plurality of locking elements to lock the implant in an extended configuration.
    Type: Application
    Filed: June 1, 2012
    Publication date: September 27, 2012
    Applicant: COALIGN INNOVATIONS, INC.
    Inventors: Philip J. Simpson, David G. Matsuura, Walter Dean Gillespie, George A. Mansfield, III, John E. Ashley
  • Patent number: 8192495
    Abstract: A spinal implant which is configured to be deployed between adjacent vertebral bodies. The implant has at least one extendable support element with a retracted configuration to facilitate deployment of the implant and an extended configuration so as to expand the implant and effectively distract the disc space, stabilize the motion segments and eliminate pathologic spine motion. Angular deformities can also be corrected, and natural curvatures restored. Preferably, the implant has a minimal dimension in its unexpanded state that is smaller than the dimensions of the neuroforamen through which it typically passes to be deployed within the intervertebral space. The implant is provided with a locking system preferably having a plurality of locking elements to lock the implant in an extended configuration.
    Type: Grant
    Filed: April 7, 2009
    Date of Patent: June 5, 2012
    Assignee: Coalign Innovations, Inc.
    Inventors: Philip J. Simpson, David G. Matsuura, Walter Dean Gillespie, George A. Mansfield, III, John E. Ashley
  • Publication number: 20120130387
    Abstract: An insertion handle for medical implants includes a handle with an elongate shaft extending therefrom and connection means for the implant disposed at the end of the shaft opposite the handle. The connection means includes a pivotable attachment for the implant that is controlled remotely from the handle. Both angle of the implant with respect to the handle and shaft as well as the attachment may be separately controlled and adjusted. Remote angular adjustment facilitates insertion of implants in to small surgical sites because the orientation of the implant may be repeatedly, remotely adjusted as the implant is inserted. Connectors may also be provided at the engagement surface between the handle and implant in order to provide communication with the implant or surgical site. The connectors also may serve as torque bearing members to avoid the need for separate torque bearing means such as keyways and the like.
    Type: Application
    Filed: April 15, 2010
    Publication date: May 24, 2012
    Applicant: COALIGN INNOVATIONS, INC.
    Inventors: Philip J. Simpson, George A. Mansfield, Damien J. Shulock, David G. Matsuura, Walter Dean Gillespie, John E. Ashley
  • Publication number: 20110224663
    Abstract: A system for providing power suitable for electrosurgery from a self-contained direct current (DC) energy source according to embodiments of the present invention includes a voltage-affecting circuit having an input and an output, wherein the voltage-affecting circuit is configured to receive energy from the DC energy source at the input and provide boosted DC energy at the output, the boosted DC energy having a voltage greater than a voltage of the DC energy source, and an inverter operable to invert the boosted DC energy to alternating current (AC) energy. The inverter may include a bridge circuit including an arrangement of switches and having an input and an output, wherein the boosted DC energy is received at the bridge circuit input, and a bridge controller operable to control the arrangement of switches to selectively connect the bridge circuit input to the bridge circuit output.
    Type: Application
    Filed: April 23, 2009
    Publication date: September 15, 2011
    Applicant: Tornier, Inc.
    Inventors: Warren P. Heim, David G. Matsuura, Walter Dean Gillespie, Louise Focht
  • Publication number: 20110130835
    Abstract: A spinal implant which is configured to be deployed between adjacent vertebral bodies. The implant has at least one extendable support element with a refracted configuration to facilitate deployment of the implant and an extended configuration so as to expand the implant and effectively distract the disc space, stabilize the motion segments and eliminate pathologic spine motion. The implant has a minimal dimension in its unexpanded state that is smaller than the dimensions of the neuroforamen through which it typically passes to be deployed within the intervertebral space. The implant is provided with a locking system having a plurality of linked locking elements that work in unison to lock the implant in an extended configuration.
    Type: Application
    Filed: May 25, 2010
    Publication date: June 2, 2011
    Applicant: INNVOTEC SURGICAL, INC.
    Inventors: John E. Ashley, Philip J. Simpson, Walter Dean Gillespie, Damien J. Shulock, Murali Kadaba, David G. Matsuura, George A. Mansfield, III, Thomas Grotz, Rudy Pretti
  • Patent number: 7842058
    Abstract: A system for rapid manipulation and cutting that includes a housing, a first cutting element, and a drive mechanism adapted to be mounted at least partly within the housing and connected to the first cutting element for imparting relative motion to the first cutting element as a combination of slicing and downward forces at the portion of the first cutting element which is adapted to contact the tissue.
    Type: Grant
    Filed: February 2, 2004
    Date of Patent: November 30, 2010
    Assignee: Flex Partners, Inc.
    Inventors: Philip J. Simpson, David G. Matsuura, Walter Dean Gillespie
  • Patent number: 7811293
    Abstract: A method and system are disclosed for rapid placement of tubes within a body cavity that includes placing a compliant cannula over a probe tip of a cutting device until the probe tip extends beyond the cannula, incising the tissue covering body cavity to create an opening therein, inserting the probe tip of the cutting device until the cannula placed thereon extends into the incision, removing the probe tip while leaving the cannula inserted within the incision, introducing a distal end or tip of a tube into the cannula a predetermined distance, and removing the cannula over the tube while retaining the tube in position within the body cavity. The device includes a sealing portion which attaches to the body without sutures and having an opening therethrough, and a tube which passes through the opening of the seal and mates thereto without sutures.
    Type: Grant
    Filed: February 2, 2004
    Date of Patent: October 12, 2010
    Inventors: Philip J. Simpson, David G. Matsuura, Walter Dean Gillespie, Chris K. Salvino, Jim Trinchera
  • Publication number: 20100145455
    Abstract: A spinal implant which is configured to be deployed between adjacent vertebral bodies. The implant has at least one extendable support element with a retracted configuration to facilitate deployment of the implant and an extended configuration so as to expand the implant and effectively distract the disc space, stabilize the motion segments and eliminate pathologic spine motion. Angular deformities can also be corrected, and natural curvatures restored. Preferably, the implant has a minimal dimension in its unexpanded state that is smaller than the dimensions of the neuroforamen through which it typically passes to be deployed within the intervertebral space. The implant is provided with a locking system preferably having a plurality of locking elements to lock the implant in an extended configuration.
    Type: Application
    Filed: March 4, 2009
    Publication date: June 10, 2010
    Inventors: Philip J. Simpson, David G. Matsuura, Walter Dean Gillespie, George A. Mansfield, III, John E. Ashley
  • Publication number: 20100145456
    Abstract: A spinal implant which is configured to be deployed between adjacent vertebral bodies. The implant has at least one extendable support element with a retracted configuration to facilitate deployment of the implant and an extended configuration so as to expand the implant and effectively distract the disc space, stabilize the motion segments and eliminate pathologic spine motion. Angular deformities can also be corrected, and natural curvatures restored. Preferably, the implant has a minimal dimension in its unexpanded state that is smaller than the dimensions of the neuroforamen through which it typically passes to be deployed within the intervertebral space. The implant is provided with a locking system preferably having a plurality of locking elements to lock the implant in an extended configuration.
    Type: Application
    Filed: April 7, 2009
    Publication date: June 10, 2010
    Inventors: Philip J. Simpson, David G. Matsuura, Walter Dean Gillespie, George A. Mansfield, III, John E. Ashley
  • Publication number: 20100057204
    Abstract: A spinal implant which is configured to be deployed between adjacent vertebral bodies. The implant has at least one extendable support element with a retracted configuration to facilitate deployment of the implant and an extended configuration so as to expand the implant and effectively distract the disc space, stabilize the motion segments and eliminate pathologic spine motion. Angular deformities can also be corrected, and natural curvatures restored. Preferably, the implant has a minimal dimension in its unexpanded state that is smaller than the dimensions of the neuroforamen through which it typically passes to be deployed within the intervertebral space. The implant is provided with a locking system preferably having a plurality of locking elements to lock the implant in an extended configuration.
    Type: Application
    Filed: August 26, 2009
    Publication date: March 4, 2010
    Inventors: Murali Kadaba, Philip J. Simpson, John E. Ashley, Walter Dean Gillespie, Thomas Grotz, George A. Mansfield, III, David G. Matsuura, Rudy Peretti
  • Publication number: 20080215152
    Abstract: Disclosed are methods and devices for restoring or establishing nutrient flow to the nucleus pulposa. An implant comprises a nutrient flow path for extending between a source of nutrients and the nucleus pulposa. The implant is positioned within the patient such that a first end is in nutrient flow communication with a subject nucleus pulposa, and the source end is positioned in nutrient flow communication with a source of nutrients.
    Type: Application
    Filed: June 7, 2006
    Publication date: September 4, 2008
    Applicant: FLEX PARTNERS, INC.
    Inventors: David G. Matsuura, Walter Dean Gillespie, Philip J. Simpson
  • Patent number: 6450948
    Abstract: A steerable probe with a deflectable tip. In one embodiment, the probe may include a cannula having a proximal end and a distal end and extending along a length therebetween, an exterior surface, an interior surface defining a lumen, an elongate flexible section extending along a first portion of the length and having a section proximal end and a section distal end. A pull wire for deflecting the flexible section in a first direction in a preferred bending plane may be substantially embedded in the cannula between the interior surface and the exterior surface and extending from the section proximal end to the section distal end. The pull wire may be secured to the cannula adjacent to the section distal end and freely passing through the section proximal end. Two longitudinal strengthening members may be embedded in and extend along the flexible section generally opposite each other about the preferred bending plane.
    Type: Grant
    Filed: November 2, 1999
    Date of Patent: September 17, 2002
    Assignee: Vista Medical Technologies, Inc.
    Inventors: David G. Matsuura, Walter Dean Gillespie, Allen Newman
  • Patent number: 6183461
    Abstract: A drug-infusing device is implanted into a body cavity such as a bladder. The device is implanted in an uninflated, low profile state. After insertion into the body cavity, the device is filled with a substance, such as a drug, and assumes an increased profile. After the device is filled, it is allowed to float freely within the body cavity. Alternatively, the device can be tethered to a wall of the body cavity. The device delivers the drug at a controlled rate over an extended period of time. In order to deliver the drug at a controlled rate, the device preferably has a pressure-responsive valving member. The flow resistance of the valving member is responsive to the pressure at which the drug is stored within the infusing device. The resistance of the valving member decreases as the pressure within the infusing device decreases, thereby providing a resultant controlled flow rate.
    Type: Grant
    Filed: September 14, 1999
    Date of Patent: February 6, 2001
    Assignee: Situs Corporation
    Inventors: David G. Matsuura, Walter Dean Gillespie, John Patrick Greelis, Charles Lowell Parsons, Mikxay Sirivong, Paul F. Zupkas
  • Patent number: 6171298
    Abstract: A drug-infusing device is implanted into a body cavity such as a bladder. The device is implanted in an uninflated, low profile state. After insertion into the body cavity, the device is filled with a substance, such as a drug, and assumes an increased profile. After the device is filled, it is allowed to float freely within the body cavity. Alternatively, the device can be tethered to a wall of the body cavity. The device delivers the drug at a controlled rate over an extended period of time. In order to deliver the drug at a controlled rate, the device preferably has a pressure-responsive valving member. The flow resistance of the valving member is responsive to the pressure at which the drug is stored within the infusing device. The resistance of the valving member decreases as the pressure within the infusing device decreases, thereby providing a resultant controlled flow rate.
    Type: Grant
    Filed: March 11, 1998
    Date of Patent: January 9, 2001
    Assignee: Situs Corporation
    Inventors: David G. Matsuura, Walter Dean Gillespie, John Patrick Greelis, Charles Lowell Parsons, Mikxay Sirivong, Paul F. Zupkas