Patents by Inventor Walter Dennis Robertson, III

Walter Dennis Robertson, III has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9464729
    Abstract: The disclosed embodiments include a pressure balance valve that solves one or more problems associated with existing designs. For example, in one embodiment, a pressure balancing valve assembly is disclosed that provides a low cost frictionless assembly that is constructed to not seal the leak path between an inlet port and an outlet port. Instead, this leak path is minimized with small angle tapered plunger and a precision bored annulus to provide a defined area for the pressure drop to occur and to limit the flow from the inlet to the outlet.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: October 11, 2016
    Assignee: Brooks Instrument, LLC
    Inventor: Walter Dennis Robertson, III
  • Patent number: 9099231
    Abstract: A magnetic core (106) is adapted for a solenoid valve (100). The magnetic core (106) includes a base (113), a stem (112), and an inner cavity (115). The inner cavity (115) is formed in a portion of the base (113) and in a portion of the stem (112). The inner cavity (115) defines a thin wall (108) of the stem (112). The magnetic core (106) further comprises a non-magnetic pressure retaining sleeve (420). The non-magnetic pressure retaining sleeve (420) is arranged in such a way that either the non-magnetic pressure retaining sleeve surrounds at least a portion of the thin wall of the stem or that at least a portion of the thin wall portion surrounds the non-magnetic pressure retaining sleeve.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: August 4, 2015
    Assignee: BROOKS INSTRUMENT, LLC
    Inventor: Walter Dennis Robertson, III
  • Patent number: 8504318
    Abstract: The present invention relates to a system, method, and computer program product for determining the flow rate of a fluid. The system, method, and computer program product generate a thermal sensor based mass flow rate for the fluid, where the thermal sensor based mass flow rate is determined at least in part from the thermal sensor signal (36). The system, method, and computer program product generate a pressure sensor based mass flow rate for the fluid, wherein the pressure sensor based mass flow rate is determined at least in part from the pressure sensor signal (51a). The system, method, and computer program product generate at least one calibration factor (?) using the thermal sensor based mass flow rate and the pressure sensor based mass flow rate. The system, method, and computer program product may generate a calibrated pressure sensor based mass flow rate by using the at least one calibration factor (?) to modify the pressure sensor based mass flow rate.
    Type: Grant
    Filed: March 5, 2008
    Date of Patent: August 6, 2013
    Assignee: Brooks Instruments, LLC
    Inventors: Jay Mendelson, Joseph C. Dille, Anthony B. Kehoe, Jeffrey L. Whiteley, Todd Berger, Walter Dennis Robertson, III
  • Publication number: 20120323379
    Abstract: The disclosed embodiments include a pressure balance valve that solves one or more problems associated with existing designs. For example, in one embodiment, a pressure balancing valve assembly is disclosed that provides a low cost frictionless assembly that is constructed to not seal the leak path between an inlet port and an outlet port. Instead, this leak path is minimized with small angle tapered plunger and a precision bored annulus to provide a defined area for the pressure drop to occur and to limit the flow from the inlet to the outlet.
    Type: Application
    Filed: June 8, 2012
    Publication date: December 20, 2012
    Inventor: Walter Dennis Robertson, III
  • Patent number: 8100382
    Abstract: A flow control valve includes an inlet and an outlet through which fluid enters and exits the valve. A valve plunger has a guide spring attached thereto, such that the guide spring is situated between the plunger and a valve orifice. The plunger, and thus the guide spring, is movable relative to the orifice to control fluid flow through the valve. The guide spring and the orifice surface adjacent the guide spring define coplanar surfaces that seal against each other when the valve is closed.
    Type: Grant
    Filed: October 8, 2004
    Date of Patent: January 24, 2012
    Assignee: Brooks Instrument, LLP
    Inventors: Walter Dennis Robertson, III, Thomas John McNichols, Stephen R. Kramer
  • Publication number: 20100286931
    Abstract: The present invention relates to a system, method, and computer program product for determining the flow rate of a fluid. The system, method, and computer program product generate a thermal sensor based mass flow rate for the fluid, where the thermal sensor based mass flow rate is determined at least in part from the thermal sensor signal (36). The system, method, and computer program product generate a pressure sensor based mass flow rate for the fluid, wherein the pressure sensor based mass flow rate is determined at least in part from the pressure sensor signal (51a). The system, method, and computer program product generate at least one calibration factor (?) using the thermal sensor based mass flow rate and the pressure sensor based mass flow rate. The system, method, and computer program product may generate a calibrated pressure sensor based mass flow rate by using the at least one calibration factor (?) to modify the pressure sensor based mass flow rate.
    Type: Application
    Filed: March 5, 2008
    Publication date: November 11, 2010
    Inventors: Jay Mendelson, Joseph C. Dille, Anthony B. Kehoe, Jeffrey L. Whiteley, Todd Berger, Walter Dennis Robertson, III
  • Publication number: 20100252761
    Abstract: A magnetic core (106) is adapted for a solenoid valve (100). The magnetic core (106) includes a base (113), a stem (112), and an inner cavity (115). The inner cavity (115) is formed in a portion of the base (113) and in a portion of the stem (112). The inner cavity (115) defines a thin wall (108) of the stem (112). The magnetic core (106) further comprises a non-magnetic pressure retaining sleeve (420). The non-magnetic pressure retaining sleeve (420) is arranged in such a way that either the non-magnetic pressure retaining sleeve surrounds at least a portion of the thin wall of the stem or that at least a portion of the thin wall portion surrounds the non-magnetic pressure retaining sleeve.
    Type: Application
    Filed: October 23, 2007
    Publication date: October 7, 2010
    Inventor: Walter Dennis Robertson III
  • Publication number: 20080116406
    Abstract: A flow control valve includes an inlet and an outlet through which fluid enters and exits the valve. A valve plunger has a guide spring attached thereto, such that the guide spring is situated between the plunger and a valve orifice. The plunger, and thus the guide spring, is movable relative to the orifice to control fluid flow through the valve. The guide spring and the orifice surface adjacent the guide spring define coplanar surfaces that seal against each other when the valve is closed.
    Type: Application
    Filed: October 8, 2004
    Publication date: May 22, 2008
    Applicant: Emerson Electric Co.
    Inventors: Walter Dennis Robertson III, Thomas John McNichols, Stephen R. Kramer