Patents by Inventor Walter Gordon Woodington

Walter Gordon Woodington has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230035968
    Abstract: A vehicular radar sensing system includes a radar sensor that includes (i) at least one transmitter that transmits radio signals, and (ii) at least one receiver that receive radio signals. The radar sensor includes a waveguide antenna and a printed circuit board (PCB) with a transmitter pad and a receiver pad. The transmitter transmits radio signals to the transmitter pad, and the receiver receives radio signals from the receiver pad. The PCB includes a ground plane layer and a plurality of conductive elements that at least partially surrounds at least the transmitter pad. The plurality of conductive elements electrically connects the waveguide antenna to the ground plane layer and attaches the PCB to the waveguide antenna. The waveguide antenna (i) guides the transmitted radio signals from the transmitter pad to the exterior environment and (ii) guides reflected radio signals from the exterior environment to the receiver pad.
    Type: Application
    Filed: July 28, 2022
    Publication date: February 2, 2023
    Inventors: Helmut Arnold Hardow Wodrich, Walter Gordon Woodington, Suresh Boddi, Holger Hess, Danny A. Schram
  • Patent number: 11333739
    Abstract: A method for calibrating a vehicular sensing system includes disposing the sensing system at a vehicle, with the sensing system including at least two radar sensors disposed at the vehicle so as to have respective fields of sensing exterior of the vehicle. At least one spherical radar reflector is disposed at a position exterior the vehicle where the fields of sensing of the at least two radar sensors overlap. A calibration mode of the sensing system is entered, and calibration radio waves are transmitted by at least one transmitter, and reflected calibration radio waves are received by receivers of the at least two radar sensors. The reflected calibration radio waves include the calibration radio waves reflected off the at least one spherical radar reflector. A controller calibrates the sensing system responsive to processing the received reflected calibration radio waves.
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: May 17, 2022
    Assignee: MAGNA ELECTRONICS INC.
    Inventors: Helmut Arnold Hardow Wodrich, Holger Hess, Sebastian Pliefke, Walter Gordon Woodington
  • Publication number: 20200271755
    Abstract: A method for calibrating a vehicular sensing system includes disposing the sensing system at a vehicle, with the sensing system including at least two radar sensors disposed at the vehicle so as to have respective fields of sensing exterior of the vehicle. At least one spherical radar reflector is disposed at a position exterior the vehicle where the fields of sensing of the at least two radar sensors overlap. A calibration mode of the sensing system is entered, and calibration radio waves are transmitted by at least one transmitter, and reflected calibration radio waves are received by receivers of the at least two radar sensors. The reflected calibration radio waves include the calibration radio waves reflected off the at least one spherical radar reflector. A controller calibrates the sensing system responsive to processing the received reflected calibration radio waves.
    Type: Application
    Filed: February 26, 2020
    Publication date: August 27, 2020
    Inventors: Helmut Arnold Hardow Wodrich, Holger Hess, Sebastian Pliefke, Walter Gordon Woodington
  • Publication number: 20100238066
    Abstract: A method of generating a target alert includes combining one or more object detection range values, an object relative velocity value, and a host vehicle velocity value to identify an alert. A system for generating a target alert includes a detection processor to provide one or more detection range values, a transceiver to receive a host vehicle velocity value, a relative velocity calculation processor to calculate a relative velocity value and an alert identification processor to combine the one or more detection range values, the relative velocity value, and the host vehicle velocity value to identify the alert.
    Type: Application
    Filed: December 30, 2005
    Publication date: September 23, 2010
    Inventors: Stephen P. Lohmeier, Walter Gordon Woodington, Wilson J. Wimmer
  • Patent number: 7683827
    Abstract: A system and method are provided to reduce the effect of an interfering signal in a radar return signal for a frequency modulated continuous wave (FMCW) radar. Once the interfering signal is detected, an extent of the interfering signal is determined and the data that was corrupted by the interfering signal is not included in the processing of the radar return signal. This allows the radar to detect a target in the presence of the interfering signal. The system and method can benefit any FMCW radar that is within the range of an interfering radar source (e.g. another FMCW radar, a police radar gun, a pulse radar, etc.) operating in the same frequency band as the FMCW radar. An alternative arrangement provides a system and method for determining the frequency of the interfering signal and then avoiding transmitting power in that portion of the frequency spectrum where the interfering signal is present.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: March 23, 2010
    Assignee: Valeo Radar Systems, Inc.
    Inventors: Thomas M. Kelly, Jr., R. Gregory Aeder, Walter Gordon Woodington
  • Patent number: 7403153
    Abstract: A system and method are provided to reduce an interfering signal in a radar return signal for a frequency modulated continuous wave (FMCW) radar. Once the interfering signal is detected, an extent of the interfering signal is determined and the interfering signal is removed from the radar return signal. This allows the radar to detect a target in the presence of the interfering signal. The system and method can benefit any FMCW radar that is within the range of an interfering radar source (e.g. another FMCW radar, a police radar gun, a pulse radar, etc.) operating in the same frequency band as the FMCW radar.
    Type: Grant
    Filed: December 15, 2004
    Date of Patent: July 22, 2008
    Assignee: Valeo Raytheon Systems, Inc.
    Inventors: Thomas M. Kelly, Jr., R. Gregory Aeder, Walter Gordon Woodington
  • Patent number: 7400290
    Abstract: A vehicle radar system includes a processing system which operates in one of a plurality of operating modes which are selected based upon an environment (or changes to an environment) surrounding the vehicle radar system. In one exemplary embodiment, the vehicle radar system is provided as a vehicle radar system which operates in one of: a highway traffic mode and a city traffic mode depending upon whether a vehicle in which the vehicle radar system is disposed is traveling along a highway or through a city.
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: July 15, 2008
    Assignee: Valeo Raytheon Systems, Inc.
    Inventors: Walter Gordon Woodington, Dennis Hunt
  • Publication number: 20080001809
    Abstract: In one aspect, the invention is a method, which includes detecting interference in a vehicle system disposed in a vehicle. Detecting includes measuring a frequency of a signal provided from a power source used in the vehicle. Detecting also includes determining if the signal has a frequency within a frequency band used by the vehicle system.
    Type: Application
    Filed: June 30, 2006
    Publication date: January 3, 2008
    Inventors: Walter Gordon Woodington, Dennis Hunt, Edward Sternal, Kenneth A. Booth
  • Patent number: 7071868
    Abstract: A radar system and method use a radar FMCW chirp having variable chirp characteristics.
    Type: Grant
    Filed: April 8, 2005
    Date of Patent: July 4, 2006
    Assignee: Raytheon Company
    Inventors: Walter Gordon Woodington, Michael Joseph Delcheccolo, Joseph S. Pleva, Mark E. Russell, H. Barteld Van Rees
  • Patent number: 6977609
    Abstract: A radar detection process includes computing a derivative of an FFT output signal to detect an object within a specified detection zone. In one embodiment, a zero crossing in the second derivative of the FFT output signal indicates the presence of an object. The range of the object is determined as a function of the frequency at which the zero crossing occurs. Also described is a detection table containing indicators of the presence or absence of an object within a respective radar beam and processing cycle. At least two such indicators are combined in order to detect the presence of an object within the detection zone and with changing range gates in each of the antenna beams the coverage of the detection zone can be varied.
    Type: Grant
    Filed: July 8, 2004
    Date of Patent: December 20, 2005
    Assignee: Raytheon Company
    Inventors: Joseph S. Pleva, Mark E. Russell, Walter Gordon Woodington, Michael Joseph Delcheccolo, H. Barteld Van Rees
  • Patent number: 6903679
    Abstract: A video amplifier for a radar receiver includes a temperature compensating attenuator. The attenuator includes a temperature sensitive device, such as a thermistor, arranged in a voltage divider network and is coupled in cascade between two filter stages. Each of the filter stages has a bandpass characteristic in order to filter low-frequency leakage signals and provide sensitivity control based on frequency and thus range, while also filtering high frequency signals to reduce aliasing.
    Type: Grant
    Filed: August 16, 2001
    Date of Patent: June 7, 2005
    Assignee: Raytheon Company
    Inventors: James T. Hanson, Walter Gordon Woodington, Michael Joseph Delcheccolo, Joseph S. Pleva, Mark E. Russell, H. Barteld Van Rees
  • Patent number: 6864831
    Abstract: A radar detection process includes computing a derivative of an FFT output signal to detect an object within a specified detection zone. In one embodiment, a zero crossing in the second derivative of the FFT output signal indicates the presence of an object. The range of the object is determined as a function of the frequency at which the zero crossing occurs. Also described is a detection table containing indicators of the presence or absence of an object within a respective radar beam and processing cycle. At least two such indicators are combined in order to detect the presence of an object within the detection zone.
    Type: Grant
    Filed: August 26, 2002
    Date of Patent: March 8, 2005
    Assignee: Raytheon Company
    Inventors: Walter Gordon Woodington, Michael Joseph Delcheccolo, Joseph S. Pleva, Mark E. Russell, H. Barteld Van Rees
  • Publication number: 20040257266
    Abstract: A radar detection process includes computing a derivative of an FFT output signal to detect an object within a specified detection zone. In one embodiment, a zero crossing in the second derivative of the FFT output signal indicates the presence of an object. The range of the object is determined as a function of the frequency at which the zero crossing occurs. Also described is a detection table containing indicators of the presence or absence of an object within a respective radar beam and processing cycle. At least two such indicators are combined in order to detect the presence of an object within the detection zone and with changing range gates in each of the antenna beams the coverage of the detection zone can be varied.
    Type: Application
    Filed: July 8, 2004
    Publication date: December 23, 2004
    Inventors: Joseph S. Pleva, Mark E. Russell, Walter Gordon Woodington, Michael Joseph Delcheccolo, H. Barteld Van Rees
  • Publication number: 20040246170
    Abstract: A radar detection process includes computing a derivative of an FFT output signal to detect an object within a specified detection zone. In one embodiment, a zero crossing in the second derivative of the FFT output signal indicates the presence of an object. The range of the object is determined as a function of the frequency at which the zero crossing occurs. Also described is a detection table containing indicators of the presence or absence of an object within a respective radar beam and processing cycle. At least two such indicators are combined in order to detect the presence of an object within the detection zone.
    Type: Application
    Filed: July 8, 2004
    Publication date: December 9, 2004
    Inventors: Walter Gordon Woodington, Michael Joseph Delcheccolo, Joseph S. Pleva, Mark E. Russell, H. Barteld Van Rees
  • Patent number: 6816107
    Abstract: A radar detection process includes computing a derivative of an FFT output signal to detect an object within a specified detection zone. In one embodiment, a zero crossing in the second derivative of the FFT output signal indicates the presence of an object. The range of the object is determined as a function of the frequency at which the zero crossing occurs. Also described is a detection table containing indicators of the presence or absence of an object within a respective radar beam and processing cycle. At least two such indicators are combined in order to detect the presence of an object within the detection zone and with changing range gates in each of the antenna beams the coverage of the detection zone can be varied.
    Type: Grant
    Filed: April 1, 2003
    Date of Patent: November 9, 2004
    Assignee: Raytheon Company
    Inventors: Joseph S. Pleva, Mark E. Russell, Walter Gordon Woodington, Michael Joseph Delcheccolo, H. Barteld Van Rees
  • Patent number: 6784828
    Abstract: A near object detection (NOD) system includes a plurality of sensors, each of the sensors for providing detection coverage in a predetermined coverage zone and each of the sensors including a transmit antenna for transmitting a first RF signal, a receive antenna for receiving a second RF signal and means for sharing information between each of the plurality of sensors in the NOD system.
    Type: Grant
    Filed: August 16, 2001
    Date of Patent: August 31, 2004
    Assignee: Raytheon Company
    Inventors: Michael Joseph Delcheccolo, Mark E. Russell, Walter Gordon Woodington, Joseph S. Pleva, H. Barteld Van Rees
  • Publication number: 20040155812
    Abstract: A radar detection process includes computing a derivative of an FFT output signal to detect an object within a specified detection zone. In one embodiment, a zero crossing in the second derivative of the FFT output signal indicates the presence of an object. The range of the object is determined as a function of the frequency at which the zero crossing occurs. Also described is a detection table containing indicators of the presence or absence of an object within a respective radar beam and processing cycle. At least two such indicators are combined in order to detect the presence of an object within the detection zone and with changing range gates in each of the antenna beams the coverage of the detection zone can be varied.
    Type: Application
    Filed: April 1, 2003
    Publication date: August 12, 2004
    Inventors: Joseph S. Pleva, Mark E. Russell, Walter Gordon Woodington, Michael Joseph Delcheccolo, H. Barteld Van Rees
  • Patent number: 6748312
    Abstract: In accordance with the present invention, an adaptive cruise control system includes a radio frequency (RF) transmit receive (TR) sensor module (or more simply “sensor”) disposed such that a detection zone is deployed in front of a vehicle. The sensor includes a sensor antenna system which comprises a transmit antenna for emitting or transmitting an RF signal and a receive antenna for receiving portions of the transmitted RF signal which are intercepted by one or more objects within a field of view of the transmit antenna and reflected back toward the receive antenna. With this particular arrangement, a detection system that detects objects in a region about a front of a vehicle is provided. If the system determines that the vehicle is approaching an object or that an object is approaching the vehicle, then the sensor initiates steps that are carried out in accordance with a set of rules that control an accelerator of the vehicle.
    Type: Grant
    Filed: August 16, 2001
    Date of Patent: June 8, 2004
    Assignee: Raytheon Company
    Inventors: Mark E. Russell, Michael Joseph Delcheccolo, Walter Gordon Woodington, H. Barteld Van Rees, John Michael Firda, Delbert Lippert
  • Patent number: 6708100
    Abstract: In accordance with the present invention, an adaptive cruise control system includes a radio frequency (RF) transmit receive (TR) sensor module (or more simply “sensor”) disposed such that a detection zone is deployed in front of a vehicle. The sensor includes a sensor antenna system which comprises a transmit antenna for emitting or transmitting an RF signal and a receive antenna for receiving portions of the transmitted RF signal which are intercepted by one or more objects within a field of view of the transmit antenna and reflected back toward the receive antenna. With this particular arrangement, a detection system that detects objects in a region about a front of a vehicle is provided. If the system determines that the vehicle is approaching an object or that an object is approaching the vehicle, then the sensor initiates steps that are carried out in accordance with a set of rules that control an accelerator of the vehicle.
    Type: Grant
    Filed: August 12, 2002
    Date of Patent: March 16, 2004
    Assignee: Raytheon Company
    Inventors: Mark E. Russell, Michael Joseph Delcheccolo, Walter Gordon Woodington, H. Barteld Van Rees, John Michael Firda, Delbert Lippert
  • Patent number: 6707414
    Abstract: A docking information system disposed on a ship provides navigational information to the operator of the ship. The system includes a short range radar system and a display to provide a range between the ship and a dock or an obstacle and, optionally, a relative velocity between the ship and the dock or the obstacle.
    Type: Grant
    Filed: January 22, 2002
    Date of Patent: March 16, 2004
    Assignee: Raytheon Company
    Inventors: H. Barteld Van Rees, Michael Joseph Delcheccolo, Delbert Lippert, Mark E. Russell, Walter Gordon Woodington