Patents by Inventor Walter Holemans

Walter Holemans has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11572202
    Abstract: A system and method for installing, deploying, and recovering a plurality of spacecraft that provides an ease of use and structural stability, and facilitates a standardization of spacecraft design. In embodiments of this invention, threaded rods are arranged orthogonal to a surface of a baseplate, and each spacecraft includes a coupling mechanism that selectively engages or disengages each threaded rod. Each spacecraft is added to the stack by engaging its coupling mechanism and rotating the threaded rods while the preceding spacecraft on the stack disengage their coupling mechanisms, thereby enabling the spacecraft to travel along the threaded rods toward the baseplate. When all of the spacecraft are added to the stack, the stack is preloaded by rotating the treaded rods into a terminator component at the top of the stack while the coupling mechanisms in all of the spacecraft are disengaged. Spacecraft are deployed by reversing the process.
    Type: Grant
    Filed: December 21, 2021
    Date of Patent: February 7, 2023
    Assignee: Planetary Systems Corporation
    Inventors: Walter Holemans, Ryan Williams
  • Patent number: 11565833
    Abstract: After deploying its payload, the final stage of a launch vehicle is maneuvered to couple the nosecone of the launch vehicle to the ‘rear’, or ‘engine-end’ of the final stage. The nosecone covers the engine of the final stage, to protect the engine and related components from the heat of re-entry and the impact of landing. Placing the nosecone over the engine and orienting the combination such that the nosecone ‘leads’ the final stage during re-entry, places the center of gravity of the combination ahead of the center of pressure in the direction of travel. Accordingly, the combination is inherently stable as it re-enters the atmosphere and falls to earth. Parachutes and directional devices are used to provide a controlled soft landing.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: January 31, 2023
    Assignee: Planetary Systems Corporation
    Inventors: Walter Holemans, Ryan Williams
  • Publication number: 20220119135
    Abstract: A system and method for installing, deploying, and recovering a plurality of spacecraft that provides an ease of use and structural stability, and facilitates a standardization of spacecraft design. In embodiments of this invention, threaded rods are arranged orthogonal to a surface of a baseplate, and each spacecraft includes a coupling mechanism that selectively engages or disengages each threaded rod. Each spacecraft is added to the stack by engaging its coupling mechanism and rotating the threaded rods while the preceding spacecraft on the stack disengage their coupling mechanisms, thereby enabling the spacecraft to travel along the threaded rods toward the baseplate. When all the spacecraft are added to the stack, the stack is preloaded by rotating the treaded rods into a terminator component at the top of the stack while the coupling mechanisms in all of the spacecraft are disengaged. Spacecraft are deployed by reversing the process.
    Type: Application
    Filed: December 21, 2021
    Publication date: April 21, 2022
    Applicant: Planetary Systems Corporation
    Inventors: Walter HOLEMANS, Ryan Williams
  • Publication number: 20220111980
    Abstract: A system and method for installing, deploying, and recovering a plurality of spacecraft that provides an ease of use and structural stability, and facilitates a standardization of spacecraft design. In embodiments of this invention, threaded rods are arranged orthogonal to a surface of a baseplate, and each spacecraft includes a coupling mechanism that selectively engages or disengages each threaded rod. Each spacecraft is added to the stack by engaging its coupling mechanism and rotating the threaded rods while the preceding spacecraft on the stack disengage their coupling mechanisms, thereby enabling the spacecraft to travel along the threaded rods toward the baseplate. When all of the spacecraft are added to the stack, the stack is preloaded by rotating the treaded rods into a terminator component at the top of the stack while the coupling mechanisms in all of the spacecraft are disengaged. Spacecraft are deployed by reversing the process.
    Type: Application
    Filed: December 21, 2021
    Publication date: April 14, 2022
    Applicant: Planetary Systems Corporation
    Inventors: Walter Holemans, Ryan Williams
  • Patent number: 11267591
    Abstract: A system and method for installing, deploying, and recovering a plurality of spacecraft that provides an ease of use and structural stability, and facilitates a standardization of spacecraft design. In embodiments of this invention, threaded rods are arranged orthogonal to a surface of a baseplate, and each spacecraft includes a coupling mechanism that selectively engages or disengages each threaded rod. Each spacecraft is added to the stack by engaging its coupling mechanism and rotating the threaded rods while the preceding spacecraft on the stack disengage their coupling mechanisms, thereby enabling the spacecraft to travel along the threaded rods toward the baseplate. When all of the spacecraft are added to the stack, the stack is preloaded by rotating the treaded rods into a terminator component at the top of the stack while the coupling mechanisms in all of the spacecraft are disengaged. Spacecraft are deployed by reversing the process.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: March 8, 2022
    Assignee: Planetary Systems Corporation
    Inventors: Walter Holemans, Ryan Williams
  • Publication number: 20210070480
    Abstract: After deploying its payload, the final stage of a launch vehicle is maneuvered to couple the nosecone of the launch vehicle to the ‘rear’, or ‘engine-end’ of the final stage. The nosecone covers the engine of the final stage, to protect the engine and related components from the heat of re-entry and the impact of landing. Placing the nosecone over the engine and orienting the combination such that the nosecone ‘leads’ the final stage during re-entry, places the center of gravity of the combination ahead of the center of pressure in the direction of travel. Accordingly, the combination is inherently stable as it re-enters the atmosphere and falls to earth. Parachutes and directional devices are used to provide a controlled soft landing.
    Type: Application
    Filed: September 9, 2020
    Publication date: March 11, 2021
    Applicant: Planetary Systems Corporation
    Inventors: Walter HOLEMANS, Ryan Williams
  • Patent number: 10703512
    Abstract: A spacecraft coupling system includes a locking component that can be deformed and placed into a stable state that locks one component into a mating component, and can easily be released from the deformed state, decoupling the two components. The locking component may include a central ring, a plurality of leaf elements arranged at the perimeter of the locking component, and a plurality of fins that extend outward from the ring to the plurality of leaf elements. A rotation of the ring element while the component is held stationary causes the fins to urge the leaf elements toward the receiving surface areas and to subsequently tension the leaf elements against surfaces on the mating component. To reduce cost and complexity, the locking component comprises a metal, such as titanium, that can be formed using an additive manufacturing process, commonly termed a 3-D printing process.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: July 7, 2020
    Assignee: Planetary Systems Corporation
    Inventor: Walter Holemans
  • Patent number: 10611449
    Abstract: A substantially hollow wingsail is configured to enable electrical components to be situated within the wingsail. In particular, the wingsail may be configured to contain the solar panels used to power the other electrical components of the vessel, as well as other items that are conventionally situated on the exterior of the vessel, such as antennas, navigation lights, and so on. The interior of the wingsail may also include a deployment device for deploying components stored in the wingsail into the sea or the atmosphere. The surface of the wingsail may include transparent or translucent areas to provide light to the solar panels, as well as optical and electromagnetic reflective areas within the wingsail to enhance the performance of the solar panels and antennas. The wingsail may also include an internal light that illuminates the translucent areas of the wingsail for enhanced visibility to other vessels.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: April 7, 2020
    Assignee: Marine Robotics, LLC
    Inventors: Walter Holemans, Vincent Vandyck
  • Publication number: 20200017243
    Abstract: A system and method for installing, deploying, and recovering a plurality of spacecraft that provides an ease of use and structural stability, and facilitates a standardization of spacecraft design. In embodiments of this invention, threaded rods are arranged orthogonal to a surface of a baseplate, and each spacecraft includes a coupling mechanism that selectively engages or disengages each threaded rod. Each spacecraft is added to the stack by engaging its coupling mechanism and rotating the threaded rods while the preceding spacecraft on the stack disengage their coupling mechanisms, thereby enabling the spacecraft to travel along the threaded rods toward the baseplate. When all of the spacecraft are added to the stack, the stack is preloaded by rotating the treaded rods into a terminator component at the top of the stack while the coupling mechanisms in all of the spacecraft are disengaged. Spacecraft are deployed by reversing the process.
    Type: Application
    Filed: July 15, 2019
    Publication date: January 16, 2020
    Applicant: Planetary Systems Corporation
    Inventors: Walter HOLEMANS, Ryan Williams
  • Publication number: 20190047670
    Abstract: A substantially hollow wingsail is configured to enable electrical components to be situated within the wingsail. In particular, the wingsail may be configured to contain the solar panels used to power the other electrical components of the vessel, as well as other items that are conventionally situated on the exterior of the vessel, such as antennas, navigation lights, and so on. The interior of the wingsail may also include a deployment device for deploying components stored in the wingsail into the sea or the atmosphere. The surface of the wingsail may include transparent or translucent areas to provide light to the solar panels, as well as optical and electromagnetic reflective areas within the wingsail to enhance the performance of the solar panels and antennas. The wingsail may also include an internal light that illuminates the translucent areas of the wingsail for enhanced visibility to other vessels.
    Type: Application
    Filed: October 11, 2018
    Publication date: February 14, 2019
    Applicant: Marine Robotics, LLC.
    Inventors: Walter Holemans, Vincent Vandyck
  • Patent number: 10124868
    Abstract: A substantially hollow wingsail is configured to enable electrical components to be situated within the wingsail. In particular, the wingsail may be configured to contain the solar panels used to power the other electrical components of the vessel, as well as other items that are conventionally situated on the exterior of the vessel, such as antennas, navigation lights, and so on. The surface of the wingsail may include transparent or translucent areas to provide light to the solar panels, as well as optical and electromagnetic reflective areas within the wingsail to enhance the performance of the solar panels and antennas. The wingsail may also include an internal light that illuminates the translucent areas of the wingsail for enhanced visibility to other vessels.
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: November 13, 2018
    Assignee: Marine Robotics, LLC.
    Inventors: Vincent Vandyck, Walter Holemans
  • Publication number: 20180217588
    Abstract: An apparatus and method for control of at least one of a plurality of semiautonomous marine vessels are provided. The system includes a control station with a communications system for network communication with marine vessels, and provides diagnostics and control for control and monitoring of the marine vessels, according to a mission plan.
    Type: Application
    Filed: September 11, 2017
    Publication date: August 2, 2018
    Applicant: Autonomous Marine Systems Inc.
    Inventors: Thomas Edwards, Eamon Carrig, Scott Nguyen, James Nugen, Walter Holemans
  • Publication number: 20170283097
    Abstract: A spacecraft coupling system includes a locking component that can be deformed and placed into a stable state that locks one component into a mating component, and can easily be released from the deformed state, decoupling the two components. The locking component may include a central ring, a plurality of leaf elements arranged at the perimeter of the locking component, and a plurality of fins that extend outward from the ring to the plurality of leaf elements. A rotation of the ring element while the component is held stationary causes the fins to urge the leaf elements toward the receiving surface areas and to subsequently tension the leaf elements against surfaces on the mating component. To reduce cost and complexity, the locking component comprises a metal, such as titanium, that can be formed using an additive manufacturing process, commonly termed a 3-D printing process.
    Type: Application
    Filed: June 16, 2017
    Publication date: October 5, 2017
    Applicant: Planetary Systems Corporation
    Inventor: Walter HOLEMANS
  • Publication number: 20170267324
    Abstract: A substantially hollow wingsail is configured to enable electrical components to be situated within the wingsail. In particular, the wingsail may be configured to contain the solar panels used to power the other electrical components of the vessel, as well as other items that are conventionally situated on the exterior of the vessel, such as antennas, navigation lights, and so on. The surface of the wingsail may include transparent or translucent areas to provide light to the solar panels, as well as optical and electromagnetic reflective areas within the wingsail to enhance the performance of the solar panels and antennas. The wingsail may also include an internal light that illuminates the translucent areas of the wingsail for enhanced visibility to other vessels.
    Type: Application
    Filed: February 22, 2017
    Publication date: September 21, 2017
    Applicant: Marine Robotics, LLC.
    Inventors: Vincent VANDYCK, Walter Holemans
  • Patent number: 9707748
    Abstract: A spacecraft coupling system includes an integral component that can be deformed and placed into a stable state that locks one component into a mating component, and can easily be released from the deformed state, decoupling the two components. The integral component may include a central ring, a plurality of leaf elements arranged at the perimeter of the component, and a plurality of fins that extend outward from the ring to the plurality of leaf elements. A rotation of the ring element while the component is held stationary causes the fins to urge the leaf elements toward the receiving surface areas and to subsequently force the leaf elements against surfaces on the mating component. To reduce cost and complexity, the integral component is a metal, such as titanium, that can be formed using an additive manufacturing process, commonly termed a 3-D printing process.
    Type: Grant
    Filed: October 3, 2014
    Date of Patent: July 18, 2017
    Assignee: Planetary Systems Corporation
    Inventor: Walter Holemans
  • Publication number: 20170097639
    Abstract: An apparatus and method for control of at least one of a plurality of semiautonomous marine vessels are provided. The system includes a control station with a communications system for network communication with marine vessels, and provides diagnostics and control for control and monitoring of the marine vessels, according to a mission plan.
    Type: Application
    Filed: August 10, 2016
    Publication date: April 6, 2017
    Applicant: Autonomous Marine Systems Inc.
    Inventors: Thomas Edwards, Eamon Carrig, Scott Nguyen, James Nugen, Walter Holemans
  • Patent number: 9415883
    Abstract: A canisterized satellite dispenser includes one or more of: a pair of guide rails that eliminate the requirement of a rectangular profile for the satellite; a preload system that secures the canisterized satellite during transport and launch, and releases to deploy the canisterized satellite; a constant-force spring to provide a uniform and predictable dispensing force; an external rectangular profile in each dimension; and internal support surfaces that simplify the design of canisterized satellites, particularly those with deployable components. Each canisterized satellite includes a pair of opposing flanges on a lower portion of the satellite that ride in a channel formed by the dispenser's guide rails and restraining flanges; no other support constraints are imposed. During travel and launch, the satellite flanges are held against the restraining flanges, rigidly fixing the satellite to the dispenser until the satellite is deployed.
    Type: Grant
    Filed: November 21, 2013
    Date of Patent: August 16, 2016
    Assignee: Planetary Systems Corporation
    Inventors: Walter Holemans, Ryan Hevner
  • Publication number: 20160147223
    Abstract: An apparatus and method for control of at least one of a plurality of semiautonomous marine vessels are provided. The system includes a control station with a communications system for network communication with marine vessels, and provides diagnostics and control for control and monitoring of the marine vessels, according to a mission plan.
    Type: Application
    Filed: January 15, 2015
    Publication date: May 26, 2016
    Inventors: Thomas Edwards, Eamon Carrig, Scott Nguyen, James Nugen, Walter Holemans
  • Patent number: 9086033
    Abstract: Propulsion systems and method for making a propulsion system include additively manufacturing a casing body into a single-piece structure having no bonded or bolted joints. The casing body defines a combustion chamber therein and is at least partially composed of a material useful as a solid rocket fuel and capable of being consumed during combustion. Other embodiments are also described.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: July 21, 2015
    Inventors: Matthew Dushku, Walter Holemans
  • Publication number: 20150097085
    Abstract: A spacecraft coupling system includes an integral component that can be deformed and placed into a stable state that locks one component into a mating component, and can easily be released from the deformed state, decoupling the two components. The integral component may include a central ring, a plurality of leaf elements arranged at the perimeter of the component, and a plurality of fins that extend outward from the ring to the plurality of leaf elements. A rotation of the ring element while the component is held stationary causes the fins to urge the leaf elements toward the receiving surface areas and to subsequently tension the leaf elements against surfaces on the mating component. To reduce cost and complexity, the integral component is a metal, such as titanium, that can be formed using an additive manufacturing process, commonly termed a 3-D printing process.
    Type: Application
    Filed: October 3, 2014
    Publication date: April 9, 2015
    Applicant: Planetary Systems Corporation
    Inventor: Walter HOLEMANS