Patents by Inventor Walter J. Stupin

Walter J. Stupin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9446367
    Abstract: Segmented silicon carbide liners for use in a fluidized bed reactor for production of polysilicon-coated granulate material are disclosed, as well as methods of making and using the segmented silicon carbide liners. Non-contaminating bonding materials for joining silicon carbide segments also are disclosed. One or more of the silicon carbide segments may be constructed of reaction-bonded silicon carbide.
    Type: Grant
    Filed: August 15, 2014
    Date of Patent: September 20, 2016
    Assignee: REC Silicon Inc
    Inventors: Matthew J. Miller, Michael V. Spangler, Gerald A. Zeininger, William J. Onstot, Walter J. Stupin
  • Publication number: 20160045880
    Abstract: Segmented silicon carbide liners for use in a fluidized bed reactor for production of polysilicon-coated granulate material are disclosed, as well as methods of making and using the segmented silicon carbide liners. Non-contaminating bonding materials for joining silicon carbide segments also are disclosed. One or more of the silicon carbide segments may be constructed of reaction-bonded silicon carbide.
    Type: Application
    Filed: August 15, 2014
    Publication date: February 18, 2016
    Applicant: REC Silicon Inc
    Inventors: Matthew J. Miller, William J. Onstot, Walter J. Stupin, Michael V. Spangler, Gerald A. Zeininger
  • Patent number: 9238211
    Abstract: Segmented silicon carbide liners for use in a fluidized bed reactor for production of polysilicon-coated granulate material are disclosed, as well as methods of making and using the segmented silicon carbide liners. Non-contaminating bonding materials for joining silicon carbide segments also are disclosed. One or more of the silicon carbide segments may be constructed of reaction-bonded silicon carbide.
    Type: Grant
    Filed: August 15, 2014
    Date of Patent: January 19, 2016
    Assignee: REC Silicon Inc
    Inventors: E. Wayne Osborne, Matthew J. Miller, Michael V. Spangler, Gerald A. Zeininger, William J. Onstot, Walter J. Stupin
  • Patent number: 9023425
    Abstract: Fluidized bed reactor systems for producing high purity silicon-coated particles are disclosed. A vessel has an outer wall, an insulation layer inwardly of the outer wall, at least one heater positioned inwardly of the insulation layer, a removable concentric liner inwardly of the heater, a central inlet nozzle, a plurality of fluidization nozzles, at least one cooling gas nozzle, and at least one product outlet. The system may include a removable concentric sleeve inwardly of the liner. In particular systems the central inlet nozzle is configured to produce a primary gas vertical plume centrally in the reactor chamber to minimize silicon deposition on reactor surfaces.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: May 5, 2015
    Assignee: REC Silicon Inc
    Inventors: E. Wayne Osborne, Michael V. Spangler, Levi C. Allen, Robert J. Geertsen, Paul E. Ege, Walter J. Stupin, Gerald Zeininger
  • Publication number: 20120263874
    Abstract: Fluidized bed reactor systems for producing high purity silicon-coated particles are disclosed. A vessel has an outer wall, an insulation layer inwardly of the outer wall, at least one heater positioned inwardly of the insulation layer, a removable concentric liner inwardly of the heater, a central inlet nozzle, a plurality of fluidization nozzles, at least one cooling gas nozzle, and at least one product outlet. The system may include a removable concentric sleeve inwardly of the liner. In particular systems the central inlet nozzle is configured to produce a primary gas vertical plume centrally in the reactor chamber to minimize silicon deposition on reactor surfaces.
    Type: Application
    Filed: November 17, 2010
    Publication date: October 18, 2012
    Inventors: E. Wayne Osborne, Michael V. Spangler, Levic C. Allen, Robert J. Geertsen, Paul E. Ege, Walter J. Stupin, Gerald Zeininger
  • Patent number: 8075692
    Abstract: Fluidized bed reactor systems for producing high purity silicon-coated particles are disclosed. A vessel has an outer wall, an insulation layer inwardly of the outer wall, at least one heater positioned inwardly of the insulation layer, a removable concentric liner inwardly of the heater, a central inlet nozzle, a plurality of fluidization nozzles, at least one cooling gas nozzle, and at least one product outlet. The system may include a removable concentric sleeve inwardly of the liner. In particular systems the central inlet nozzle is configured to produce a primary gas vertical plume centrally in the reactor chamber to minimize silicon deposition on reactor surfaces.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: December 13, 2011
    Assignee: Rec Silicon Inc
    Inventors: E. Wayne Osborne, Michael V. Spangler, Levi C. Allen, Robert J. Geertsen, Paul E. Ege, Walter J. Stupin, Gerald Zeininger
  • Publication number: 20110117729
    Abstract: Fluidized bed reactor systems for producing high purity silicon-coated particles are disclosed. A vessel has an outer wall, an insulation layer inwardly of the outer wall, at least one heater positioned inwardly of the insulation layer, a removable concentric liner inwardly of the heater, a central inlet nozzle, a plurality of fluidization nozzles, at least one cooling gas nozzle, and at least one product outlet. The system may include a removable concentric sleeve inwardly of the liner. In particular systems the central inlet nozzle is configured to produce a primary gas vertical plume centrally in the reactor chamber to minimize silicon deposition on reactor surfaces.
    Type: Application
    Filed: November 17, 2010
    Publication date: May 19, 2011
    Inventors: E. Wayne Osborne, Michael V. Spangler, Levi C. Allen, Robert J. Geertsen, Paul E. Ege, Walter J. Stupin, Gerald Zeininger
  • Patent number: 4756730
    Abstract: A process for the cryogenic purification of industrial by-product hydrogen streams to recover a high yield of a high purity hydrogen product is disclosed in which two or more of such by-product streams, one containing detrimental amounts of non-readily condensible impurities having boiling points below that of methane, e.g., nitrogen, helium and the like, the other containing by-product hydrogen gas streams which are substantially free of non-readily condensible impurities. These two feed streams are then separately passed through successive cooling and separation stages. At each separation stage, a liquid bottom fraction containing readily condensible hydrocarbons is separated from the overhead of each of the two feed streams. Successive separations are carried out until the overhead from the stream which is substantially free of non-readily condensible impurities (but which contains a significant amount of readily condensible impurities, including methane) attains the desired degree of purity.
    Type: Grant
    Filed: August 8, 1986
    Date of Patent: July 12, 1988
    Assignee: Santa Fe Braun Inc.
    Inventor: Walter J. Stupin