Patents by Inventor Walter J. Symes, Jr.

Walter J. Symes, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210269363
    Abstract: LTCC devices are produced from dielectric compositions include a mixture of precursor materials that, upon firing, forms a dielectric material having a zinc-magnesium-manganese-silicon oxide host.
    Type: Application
    Filed: July 2, 2019
    Publication date: September 2, 2021
    Inventors: Peter Marley, Walter J. Symes, JR.
  • Patent number: 10494306
    Abstract: Electronic devices are produced from dielectric compositions comprising a mixture of precursor materials that, upon firing, forms a dielectric material comprising a barium-titanium-tungsten-silicon oxide.
    Type: Grant
    Filed: August 2, 2016
    Date of Patent: December 3, 2019
    Assignee: Ferro Corporation
    Inventor: Walter J. Symes, Jr.
  • Patent number: 10287211
    Abstract: LTCC devices are produced from dielectric compositions comprising a mixture of precursor materials that, upon firing, forms a dielectric material comprising a barium-tungsten-silicon host.
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: May 14, 2019
    Assignee: Ferro Corporation
    Inventor: Walter J. Symes, Jr.
  • Patent number: 10065894
    Abstract: Electronic devices are produced from dielectric compositions comprising a mixture of precursor materials that, upon firing, forms a dielectric material comprising a barium-strontium-titanium-tungsten-silicon oxide.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: September 4, 2018
    Assignee: Ferro Corporation
    Inventor: Walter J. Symes, Jr.
  • Publication number: 20180170813
    Abstract: Electronic devices are produced from dielectric compositions comprising a mixture of precursor materials that, upon firing forms a dielectric material comprising a barium-titanium-tungsten-silicon oxide.
    Type: Application
    Filed: August 2, 2016
    Publication date: June 21, 2018
    Inventor: Walter J. Symes, JR.
  • Patent number: 9892853
    Abstract: LTCC devices are produced from dielectric compositions comprising a mixture of precursor materials that, upon firing, forms a dielectric material comprising a matrix of titanates of alkaline earth metals, the matrix doped with at least one selected from rare-earth element, aluminum oxide, silicon oxide and bismuth oxide.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: February 13, 2018
    Assignee: Ferro Corporation
    Inventors: Walter J. Symes, Jr., Gregory R. Prinzbach, John J. Maloney, James E. Henry, Orville W. Brown, Srinivasan Sridharan, Yie-Shein Her, Stanley Wang, George E. Graddy, Jr., George E. Sakoske
  • Publication number: 20180022650
    Abstract: LTCC devices are produced from dielectric compositions comprising a mixture of precursor materials that, upon firing, forms a dielectric material comprising a barium-tungsten-silicon host.
    Type: Application
    Filed: February 17, 2016
    Publication date: January 25, 2018
    Inventor: Walter J. Symes, Jr.
  • Patent number: 9852848
    Abstract: Multilayer ceramic chip capacitors which satisfy COG requirements and which are compatible with reducing atmosphere sintering conditions so that non-noble metals such as nickel and nickel alloys thereof may be used for internal and external electrodes are made in accordance with the invention. The capacitors exhibit desirable dielectric properties (high capacitance, low dissipation factor, high insulation resistance), excellent performance on highly accelerated life testing, and very good resistance to dielectric breakdown. The dielectric layers comprise a barium strontium zirconate matrix doped with other metal oxides such as TiO2, CaO, B2O3, and MgO in various combinations.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: December 26, 2017
    Assignee: Ferro Corporation
    Inventor: Walter J. Symes, Jr.
  • Publication number: 20170240471
    Abstract: Electronic devices are produced from dielectric compositions comprising a mixture of precursor materials that, upon firing, forms a dielectric material comprising a barium-strontium-titanium-tungsten-silicon oxide.
    Type: Application
    Filed: June 29, 2016
    Publication date: August 24, 2017
    Inventor: Walter J. Symes, Jr.
  • Publication number: 20170200557
    Abstract: Multilayer ceramic chip capacitors which satisfy COG requirements and which are compatible with reducing atmosphere sintering conditions so that non-noble metals such as nickel and nickel alloys thereof may be used for internal and external electrodes are made in accordance with the invention. The capacitors exhibit desirable dielectric properties (high capacitance, low dissipation factor, high insulation resistance), excellent performance on highly accelerated life testing, and very good resistance to dielectric breakdown. The dielectric layers comprise a barium strontium zirconate matrix doped with other metal oxides such as TiO2, CaO, B2O3, and MgO in various combinations.
    Type: Application
    Filed: June 27, 2016
    Publication date: July 13, 2017
    Inventor: Walter J. Symes, Jr.
  • Patent number: 9704650
    Abstract: Multilayer ceramic chip capacitors which satisfy COG requirements and which are compatible with reducing atmosphere sintering conditions so that non-noble metals such as nickel and nickel alloys may be used for internal and external electrodes are disclosed. The capacitors exhibit desirable dielectric properties (high capacitance, low dissipation factor, high insulation resistance), excellent performance on highly accelerated life testing, and very good resistance to dielectric breakdown. The dielectric layers comprise a strontium zirconate matrix doped with other metal oxides such as TiO2, MgO, B2O3, CaO, MnO, Nd2O3 and Nb2O5 in various combinations.
    Type: Grant
    Filed: September 8, 2014
    Date of Patent: July 11, 2017
    Assignee: Ferro Corporation
    Inventor: Walter J. Symes, Jr.
  • Publication number: 20170110246
    Abstract: LTCC devices are produced from dielectric compositions comprising a mixture of precursor materials that, upon firing, forms a dielectric material comprising a matrix of titanates of alkaline earth metals, the matrix doped with at least one selected from rare-earth element, aluminum oxide, silicon oxide and bismuth oxide.
    Type: Application
    Filed: June 12, 2015
    Publication date: April 20, 2017
    Inventors: Walter J. Symes, JR., Gregory R. Prinzbach, John J. Maloney, James E. Henry, Orville W. Brown, Srinivasan Sridharan, Yie-Shein Her, Stanley Wang, George E. Graddy, JR., George E. Sakoske
  • Publication number: 20160240313
    Abstract: Multilayer ceramic chip capacitors which satisfy COG requirements and which are compatible with reducing atmosphere sintering conditions so that non-noble metals such as nickel and nickel alloys may be used for internal and external electrodes are disclosed. The capacitors exhibit desirable dielectric properties (high capacitance, low dissipation factor, high insulation resistance), excellent performance on highly accelerated life testing, and very good resistance to dielectric breakdown. The dielectric layers comprise a strontium zirconate matrix doped with other metal oxides such as TiO2, MgO, B2O3, CaO, MnO, Nd2O3 and Nb2O5 in various combinations.
    Type: Application
    Filed: September 8, 2014
    Publication date: August 18, 2016
    Inventor: Walter J. Symes, Jr.
  • Patent number: 8305731
    Abstract: Multilayer ceramic chip capacitors (MLCC's) which satisfy X7R TCC requirements and which are compatible with silver-palladium internal electrodes. The MLCC's exhibit desirable dielectric properties—high capacitance, low dissipation factor, high insulation resistance, stable TCC—and excellent performance on highly accelerated life testing, and good resistance to dielectric breakdown. The dielectric layers include a lead-free and cadmium-free barium titanate base material doped with other metal oxides such oxides of zinc, boron, bismuth, barium, titanium, praseodymium, cerium, tungsten, neodymium, tungsten, tin, niobium, copper, and/or manganese in various combinations. The dielectric ceramic materials herein can be fired at less than 1150° C. with an inner electrode having 70 wt % or more Ag and 30 wt % or less Pd to form an MLCC.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: November 6, 2012
    Assignee: Ferro Corporation
    Inventors: Walter J. Symes, Jr., Mike S. H. Chu
  • Patent number: 8114801
    Abstract: Multilayer ceramic chip capacitors which satisfy COG requirements and which are compatible with reducing atmosphere sintering conditions so that non-noble metals such as nickel and nickel alloys thereof may be used for internal and external electrodes are made in accordance with the invention. The capacitors exhibit desirable dielectric properties (high capacitance, low dissipation factor, high insulation resistance), excellent performance on highly accelerated life testing, and very good resistance to dielectric breakdown. The dielectric layers comprise a strontium zirconate matrix doped with other metal oxides such as TiO2, MgO, B2O3, CaO, Al2O3, SiO2, and SrO in various combinations.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: February 14, 2012
    Assignee: Ferro Corporation
    Inventors: Walter J. Symes, Jr., Mohammed H. Megherhi, Elisabeth W. J. Römer, Mike S. H. Chu, Willibrordus J. L. M. J. Coppens
  • Publication number: 20110090619
    Abstract: Multilayer ceramic chip capacitors which satisfy COG requirements and which are compatible with reducing atmosphere sintering conditions so that non-noble metals such as nickel and nickel alloys thereof may be used for internal and external electrodes are made in accordance with the invention. The capacitors exhibit desirable dielectric properties (high capacitance, low dissipation factor, high insulation resistance), excellent performance on highly accelerated life testing, and very good resistance to dielectric breakdown. The dielectric layers comprise a strontium zirconate matrix doped with other metal oxides such as TiO2, MgO, B2O3, CaO, Al2O3, SiO2, and SrO in various combinations.
    Type: Application
    Filed: November 15, 2010
    Publication date: April 21, 2011
    Applicant: FERRO CORPORATION
    Inventors: Walter J. Symes, JR., Mohammed H. Megherhi, Elisabeth W. J. Römer, Mike S. H. Chu, Willibrordus J. L. M. J. Coppens
  • Patent number: 7858548
    Abstract: Multilayer ceramic chip capacitors which satisfy COG requirements and which are compatible with reducing atmosphere sintering conditions so that non-noble metals such as nickel and nickel alloys thereof may be used for internal and external electrodes are made in accordance with the invention. The capacitors exhibit desirable dielectric properties (high capacitance, low dissipation factor, high insulation resistance), excellent performance on highly accelerated life testing, and very good resistance to dielectric breakdown. The dielectric layers comprise a strontium zirconate matrix doped with other metal oxides such as TiO2, MgO, B2O3, CaO, Al2O3, SiO2, and SrO in various combinations.
    Type: Grant
    Filed: September 13, 2006
    Date of Patent: December 28, 2010
    Assignee: Ferro Corporation
    Inventors: Walter J. Symes, Jr., Mohammed H. Megherhi, Elisabeth W. J. Römer, Mike S. H. Chu, Willibrordus J. L. M. J. Coppens
  • Publication number: 20100220427
    Abstract: Multilayer ceramic chip capacitors (MLCC's) which satisfy X7R TCC requirements and which are compatible with silver-palladium internal electrodes. The MLCC's exhibit desirable dielectric properties—high capacitance, low dissipation factor, high insulation resistance, stable TCC—and excellent performance on highly accelerated life testing, and good resistance to dielectric breakdown. The dielectric layers comprise a lead-free and cadmium-free barium titanate base material doped with other metal oxides such oxides of zinc, boron, bismuth, barium, titanium, praseodymium, cerium, tungsten, neodymium, tungsten, tin, niobium, copper, and/or manganese in various combinations. The dielectric ceramic materials herein can be fired at less than 1150° C. with an inner electrode having 70 wt % or more Ag and 30 wt % or less Pd to form an MLCC.
    Type: Application
    Filed: October 27, 2008
    Publication date: September 2, 2010
    Applicant: FERRO CORPORATION
    Inventors: Walter J. Symes, JR., Mike S. H. Chu
  • Patent number: 7521390
    Abstract: Multilayer ceramic chip capacitors which satisfy X7R and BX requirements and which are compatible with silver-palladium internal electrodes are made in accordance with the invention. The capacitors exhibit desirable dielectric properties (high capacitance, low dissipation factor, high insulation resistance), excellent performance on highly accelerated life testing, and very good resistance to dielectric breakdown. The dielectric layers comprise a lead-free and cadmium-free barium titanate base material doped with other metal oxides such oxides of zinc, boron, bismuth, cerium, tungsten, copper, manganese, neodymium, niobium, silver, barium, silicon and nickel in various combinations. The dielectric ceramic materials herein can be sintered together (fired) at less than 1000° C. with an inner electrode having more than 80 wt % Ag and less than 20 wt % Pd to form a multilayer ceramic capacitor (MLCC).
    Type: Grant
    Filed: March 5, 2007
    Date of Patent: April 21, 2009
    Assignee: Ferro Corporation
    Inventors: Walter J. Symes, Jr., Mike S. H. Chu
  • Patent number: 7161795
    Abstract: Multilayer ceramic chip capacitors which satisfy COG requirements and which are compatible with reducing atmosphere sintering conditions so that non-noble metals such as copper and copper alloys thereof may be used for internal and external electrodes are made in accordance with the invention. The capacitors exhibit desirable dielectric properties (high capacitance, low dissipation factor, high insulation resistance), excellent performance on highly accelerated life testing, and very good resistance to dielectric breakdown. The dielectric layers comprise a composite oxide formed by calcining rare earth titanates, barium titanate, together with other metal oxides such as MgO, CaO, ZnO, MnO2, ZrO2, SiO2, Ga2O3, Nd2O3, Nb2O5, and Y2O3.
    Type: Grant
    Filed: September 26, 2005
    Date of Patent: January 9, 2007
    Assignee: Ferro Corporation
    Inventors: Mohammed H. Megherhi, Walter J. Symes, Jr., Mike S. H. Chu