Patents by Inventor Walter Kleemeier

Walter Kleemeier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11205621
    Abstract: A device is provided that includes a first die having a first alignment structure that includes a plurality of first transmission columns arranged in a pattern and a second die positioned on the first die, the second die having a second alignment structure that includes a plurality of second transmission columns arranged in the same pattern as the first transmission columns. The first and second transmission columns are each coplanar with a first surface and a second surface of the first and second die, respectively.
    Type: Grant
    Filed: March 3, 2020
    Date of Patent: December 21, 2021
    Assignee: STMICROELECTRONICS, INC.
    Inventors: John H. Zhang, Walter Kleemeier, Paul Ferreira, Ronald K. Sampson
  • Publication number: 20200203286
    Abstract: A device is provided that includes a first die having a first alignment structure that includes a plurality of first transmission columns arranged in a pattern and a second die positioned on the first die, the second die having a second alignment structure that includes a plurality of second transmission columns arranged in the same pattern as the first transmission columns. The first and second transmission columns are each coplanar with a first surface and a second surface of the first and second die, respectively.
    Type: Application
    Filed: March 3, 2020
    Publication date: June 25, 2020
    Inventors: John H. ZHANG, Walter KLEEMEIER, Paul FERREIRA, Ronald K. SAMPSON
  • Patent number: 10615125
    Abstract: A device is provided that includes a first die having a first alignment structure that includes a plurality of first transmission columns arranged in a pattern and a second die positioned on the first die, the second die having a second alignment structure that includes a plurality of second transmission columns arranged in the same pattern as the first transmission columns. The first and second transmission columns are each coplanar with a first surface and a second surface of the first and second die, respectively.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: April 7, 2020
    Assignee: STMicroelectronics, Inc.
    Inventors: John H. Zhang, Walter Kleemeier, Paul Ferreira, Ronald K. Sampson
  • Publication number: 20180114756
    Abstract: A device is provided that includes a first die having a first alignment structure that includes a plurality of first transmission columns arranged in a pattern and a second die positioned on the first die, the second die having a second alignment structure that includes a plurality of second transmission columns arranged in the same pattern as the first transmission columns. The first and second transmission columns are each coplanar with a first surface and a second surface of the first and second die, respectively.
    Type: Application
    Filed: December 21, 2017
    Publication date: April 26, 2018
    Inventors: John H. ZHANG, Walter KLEEMEIER, Paul FERREIRA, Ronald K. SAMPSON
  • Patent number: 9870999
    Abstract: A device is provided that includes a first die having a first alignment structure that includes a plurality of first transmission columns arranged in a pattern and a second die positioned on the first die, the second die having a second alignment structure that includes a plurality of second transmission columns arranged in the same pattern as the first transmission columns. The first and second transmission columns are each coplanar with a first surface and a second surface of the first and second die, respectively.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: January 16, 2018
    Assignee: STMICROELECTRONICS, INC.
    Inventors: John H. Zhang, Walter Kleemeier, Paul Ferreira, Ronald K. Sampson
  • Patent number: 9646939
    Abstract: Various embodiments facilitate die protection for an integrated circuit. In one embodiment, a multilayer structure is formed in multiple levels and along the edges of a die to prevent and detect damages to the die. The multilayer structure includes a support layer, a first plurality of dielectric pillars overlying the support layer, a metal layer that fills spaces between the first plurality of dielectric pillars, an insulation layer overlying the first plurality of dielectric pillars and the metal layer, a second plurality of dielectric pillars overlying the insulation layer, and a second metal layer that fills spaces between the second plurality of dielectric pillars.
    Type: Grant
    Filed: April 5, 2016
    Date of Patent: May 9, 2017
    Assignees: International Business Machines Corporation, STMicroelectronics, Inc.
    Inventors: John H. Zhang, Lawrence A. Clevenger, Carl Radens, Yiheng Xu, Byoung Youp Kim, Walter Kleemeier
  • Patent number: 9633909
    Abstract: An integrated circuit includes a substrate supporting a transistor having a source region and a drain region. A high dopant concentration delta-doped layer is present on the source region and drain region of the transistor. A set of contacts extend through a pre-metal dielectric layer covering the transistor. A silicide region is provided at a bottom of the set of contacts. The silicide region is formed by a salicidation reaction between a metal present at the bottom of the contact and the high dopant concentration delta-doped layer on the source region and drain region of the transistor.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: April 25, 2017
    Assignee: STMicroelectronics, Inc.
    Inventors: Walter Kleemeier, Qing Liu
  • Patent number: 9543397
    Abstract: An integrated circuit transistor is formed on and in a substrate. A trench in the substrate is at least partially filed with a metal material to form a source (or drain) contact buried in the substrate. The substrate further includes a source (or drain) region epitaxially grown above the source (or drain) contact. The substrate further includes a channel region adjacent to the source (or drain) region. A gate dielectric is provided on top of the channel region and a gate electrode is provided on top of the gate dielectric. The substrate is preferably of the silicon on insulator (SOI) type.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: January 10, 2017
    Assignee: STMICROELECTRONICS, INC.
    Inventors: Walter Kleemeier, John Hongguang Zhang
  • Publication number: 20160300857
    Abstract: A junctionless field effect transistor on an insulating layer of a substrate includes a fin made of semiconductor material doped with a dopant of a first conductivity type. A channel made of an epitaxial semiconductor material region doped with a dopant of a second conductivity type is in contact with a top surface of the fin. An insulated metal gate straddles the channel. A source connection is made to the epitaxial semiconductor material region on one side of said insulated metal gate, and a drain connection is made to the epitaxial semiconductor material region on an opposite side of said insulated metal gate. The epitaxial channel may further be grown from and be in contact with opposed side surfaces of the fin.
    Type: Application
    Filed: April 7, 2015
    Publication date: October 13, 2016
    Applicant: STMicroelectronics, Inc.
    Inventors: Qing Liu, John Hongguang Zhang, Walter Kleemeier
  • Publication number: 20160218070
    Abstract: Various embodiments facilitate die protection for an integrated circuit. In one embodiment, a multilayer structure is formed in multiple levels and along the edges of a die to prevent and detect damages to the die. The multilayer structure includes a support layer, a first plurality of dielectric pillars overlying the support layer, a metal layer that fills spaces between the first plurality of dielectric pillars, an insulation layer overlying the first plurality of dielectric pillars and the metal layer, a second plurality of dielectric pillars overlying the insulation layer, and a second metal layer that fills spaces between the second plurality of dielectric pillars.
    Type: Application
    Filed: April 5, 2016
    Publication date: July 28, 2016
    Inventors: John H. Zhang, Lawrence A. Clevenger, Carl Radens, Yiheng Xu, Byoung Youp Kim, Walter Kleemeier
  • Patent number: 9337087
    Abstract: Various embodiments facilitate die protection for an integrated circuit. In one embodiment, a multilayer structure is formed in multiple levels and along the edges of a die to prevent and detect damages to the die. The multilayer structure includes a support layer, a first plurality of dielectric pillars overlying the support layer, a metal layer that fills spaces between the first plurality of dielectric pillars, an insulation layer overlying the first plurality of dielectric pillars and the metal layer, a second plurality of dielectric pillars overlying the insulation layer, and a second metal layer that fills spaces between the second plurality of dielectric pillars.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: May 10, 2016
    Assignees: STMicroelectronics, Inc., International Business Machines Corporation
    Inventors: John H. Zhang, Lawrence A. Clevenger, Carl Radens, Yiheng Xu, Byoung Youp Kim, Walter Kleemeier
  • Publication number: 20160118305
    Abstract: An integrated circuit includes a substrate supporting a transistor having a source region and a drain region. A high dopant concentration delta-doped layer is present on the source region and drain region of the transistor. A set of contacts extend through a pre-metal dielectric layer covering the transistor. A silicide region is provided at a bottom of the set of contacts. The silicide region is formed by a salicidation reaction between a metal present at the bottom of the contact and the high dopant concentration delta-doped layer on the source region and drain region of the transistor.
    Type: Application
    Filed: November 16, 2015
    Publication date: April 28, 2016
    Applicant: STMICROELECTRONICS, INC.
    Inventors: Walter Kleemeier, Qing Liu
  • Patent number: 9324660
    Abstract: A device is provided that includes a first die having a first alignment structure that includes a plurality of first transmission columns arranged in a pattern and a second die positioned on the first die, the second die having a second alignment structure that includes a plurality of second transmission columns arranged in the same pattern as the first transmission columns. The first and second transmission columns are each coplanar with a first surface and a second surface of the first and second die, respectively.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: April 26, 2016
    Assignee: STMicroelectronics, Inc.
    Inventors: John H. Zhang, Walter Kleemeier, Paul Ferreira, Ronald K. Sampson
  • Publication number: 20160079131
    Abstract: A device is provided that includes a first die having a first alignment structure that includes a plurality of first transmission columns arranged in a pattern and a second die positioned on the first die, the second die having a second alignment structure that includes a plurality of second transmission columns arranged in the same pattern as the first transmission columns. The first and second transmission columns are each coplanar with a first surface and a second surface of the first and second die, respectively.
    Type: Application
    Filed: November 24, 2015
    Publication date: March 17, 2016
    Inventors: John H. ZHANG, Walter KLEEMEIER, Paul FERREIRA, Ronald K. SAMPSON
  • Publication number: 20160056249
    Abstract: An integrated circuit transistor is formed on and in a substrate. A trench in the substrate is at least partially filed with a metal material to form a source (or drain) contact buried in the substrate. The substrate further includes a source (or drain) region epitaxially grown above the source (or drain) contact. The substrate further includes a channel region adjacent to the source (or drain) region. A gate dielectric is provided on top of the channel region and a gate electrode is provided on top of the gate dielectric. The substrate is preferably of the silicon on insulator (SOI) type.
    Type: Application
    Filed: November 3, 2015
    Publication date: February 25, 2016
    Applicant: STMICROELECTRONICS, INC.
    Inventors: Walter Kleemeier, John Hongguang Zhang
  • Patent number: 9240454
    Abstract: An integrated circuit includes a substrate supporting a transistor having a source region and a drain region. A high dopant concentration delta-doped layer is present on the source region and drain region of the transistor. A set of contacts extend through a pre-metal dielectric layer covering the transistor. A silicide region is provided at a bottom of the set of contacts. The silicide region is formed by a salicidation reaction between a metal present at the bottom of the contact and the high dopant concentration delta-doped layer on the source region and drain region of the transistor.
    Type: Grant
    Filed: October 22, 2014
    Date of Patent: January 19, 2016
    Assignee: STMicroelectronics, Inc.
    Inventors: Qing Liu, Walter Kleemeier
  • Publication number: 20150357477
    Abstract: An integrated circuit transistor is formed on and in a substrate. A trench in the substrate is at least partially filed with a metal material to form a source (or drain) contact buried in the substrate. The substrate further includes a source (or drain) region epitaxially grown above the source (or drain) contact. The substrate further includes a channel region adjacent to the source (or drain) region. A gate dielectric is provided on top of the channel region and a gate electrode is provided on top of the gate dielectric. The substrate is preferably of the silicon on insulator (SOI) type.
    Type: Application
    Filed: June 6, 2014
    Publication date: December 10, 2015
    Applicant: STMicroelectronics, Inc.
    Inventors: John Hongguang Zhang, Walter Kleemeier
  • Patent number: 9209305
    Abstract: An integrated circuit transistor is formed on and in a substrate. A trench in the substrate is at least partially filed with a metal material to form a source (or drain) contact buried in the substrate. The substrate further includes a source (or drain) region epitaxially grown above the source (or drain) contact. The substrate further includes a channel region adjacent to the source (or drain) region. A gate dielectric is provided on top of the channel region and a gate electrode is provided on top of the gate dielectric. The substrate is preferably of the silicon on insulator (SOI) type.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: December 8, 2015
    Assignee: STMicroelectronics, Inc.
    Inventors: John Hongguang Zhang, Walter Kleemeier
  • Patent number: 8987780
    Abstract: A graphene capped HEMT device and a method of fabricating same are disclosed. The graphene capped HEMT device includes one or more graphene caps that enhance device performance and/or reliability of an exemplary AlGaN/GaN heterostructure transistor used in high-frequency, high-energy applications, e.g., wireless telecommunications. The HEMT device disclosed makes use of the extraordinary material properties of graphene. One of the graphene caps acts as a heat sink underneath the transistor, while the other graphene cap stabilizes the source, drain, and gate regions of the transistor to prevent cracking during high-power operation. A process flow is disclosed for replacing a three-layer film stack, previously used to prevent cracking, with a one-atom thick layer of graphene, without otherwise degrading device performance. In addition, the HEMT device disclosed includes a hexagonal boron nitride adhesion layer to facilitate deposition of the compound nitride semiconductors onto the graphene.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: March 24, 2015
    Assignee: STMicroelectronics, Inc.
    Inventors: John H Zhang, Cindy Goldberg, Walter Kleemeier
  • Publication number: 20140353722
    Abstract: A graphene capped HEMT device and a method of fabricating same are disclosed. The graphene capped HEMT device includes one or more graphene caps that enhance device performance and/or reliability of an exemplary AlGaN/GaN heterostructure transistor used in high-frequency, high-energy applications, e.g., wireless telecommunications. The HEMT device disclosed makes use of the extraordinary material properties of graphene. One of the graphene caps acts as a heat sink underneath the transistor, while the other graphene cap stabilizes the source, drain, and gate regions of the transistor to prevent cracking during high-power operation. A process flow is disclosed for replacing a three-layer film stack, previously used to prevent cracking, with a one-atom thick layer of graphene, without otherwise degrading device performance. In addition, the HEMT device disclosed includes a hexagonal boron nitride adhesion layer to facilitate deposition of the compound nitride semiconductors onto the graphene.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 4, 2014
    Inventors: John H. Zhang, Cindy Goldberg, Walter Kleemeier