Patents by Inventor Walter R. Laster

Walter R. Laster has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10139111
    Abstract: A secondary fuel stage (14) of a combustor of a gas turbine engine. The combustor has a main combustion zone (43) upstream of the secondary fuel stage to ignite working gas The secondary fuel stage includes a nozzle (18) with dual outlets (20, 22) oriented with a circumferential component to inject an air-fuel mixture (24) into the combustor. The nozzle is effective to entrain the air-fuel mixture with the working gas (44) such that a peak temperature (46) of the working gas at a location downstream of the secondary fuel stage is less than a peak temperature (50) of working gas if the air-fuel mixture were injected into the combustor with a single outlet nozzle (118).
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: November 27, 2018
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Walter R. Laster, Scott M. Martin, Juan Enrique Portillo Bilbao, Jacob Hardes, Timothy A. Fox
  • Patent number: 9366443
    Abstract: An apparatus and method for lean/rich combustion in a gas turbine engine (10), which includes a combustor (12), a transition (14) and a combustor extender (16) that is positioned between the combustor (12) and the transition (14) to connect the combustor (12) to the transition (14). Openings (18) are formed along an outer surface (20) of the combustor extender (16). The gas turbine (10) also includes a fuel manifold (28) to extend along the outer surface (20) of the combustor extender (16), with fuel nozzles (30) to align with the respective openings (18). A method (200) for axial stage combustion in the gas turbine engine (10) is also presented.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: June 14, 2016
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Walter R. Laster, Peter Szedlacsek
  • Patent number: 9353949
    Abstract: A flow conditioning device (30, 50, 70, 100, 150) for a can annular gas turbine engine, including a plurality of flow elements (32, 34, 52, 54, 72, 74, 102) disposed in a compressed air flow path (42, 60, 80, 114, 122) leading to a combustor (12), configured such that relative adjustment of at least one flow directing element (32, 52, 72, 110) with respect to an adjacent flow directing element (34, 54, 74, 112, 120) during operation of the gas turbine engine is effective to adjust a level of choking of the compressed air flow path (42, 60, 80, 114, 122).
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: May 31, 2016
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Walter R. Laster, Reinhard Schilp
  • Publication number: 20150369135
    Abstract: A flow conditioning device (30, 50, 70, 100, 150) for a can annular gas turbine engine, including a plurality of flow elements (32, 34, 52, 54, 72, 74, 102) disposed in a compressed air flow path (42, 60, 80, 114, 122) leading to a combustor (12), configured such that relative adjustment of at least one flow directing element (32, 52, 72, 110) with respect to an adjacent flow directing element (34, 54, 74, 112, 120) during operation of the gas turbine engine is effective to adjust a level of choking of the compressed air flow path (42, 60, 80, 114, 122).
    Type: Application
    Filed: April 17, 2012
    Publication date: December 24, 2015
    Inventors: Walter R. Laster, Reinhard Schilp
  • Publication number: 20150276226
    Abstract: A secondary fuel stage (14) of a combustor of a gas turbine engine. The combustor has a main combustion zone (43) upstream of the secondary fuel stage to ignite working gas The secondary fuel stage includes a nozzle (18) with dual outlets (20, 22) oriented with a circumferential component to inject an air-fuel mixture (24) into the combustor. The nozzle is effective to entrain the air-fuel mixture with the working gas (44) such that a peak temperature (46) of the working gas at a location downstream of the secondary fuel stage is less than a peak temperature (50) of working gas if the air-fuel mixture were injected into the combustor with a single outlet nozzle (118).
    Type: Application
    Filed: March 28, 2014
    Publication date: October 1, 2015
    Applicant: Siemens Energy, Inc.
    Inventors: Walter R. Laster, Scott M. Martin, Juan Enrique Portillo Bilbao, Jacob Hardes, Timothy A. Fox
  • Publication number: 20150167980
    Abstract: A gas turbine engine (202) including a secondary fuel stage (218) which also functions as a dual frequency resonator. The engine includes a combustor (210) and a casing (205) enclosing the combustor to define a volume (214). The secondary fuel stage includes a nozzle (217) sized to be effective as a transverse resonator at a high frequency. The nozzle and the volume (214) of the casing are sized to be effective as a longitudinal resonator at an intermediate frequency.
    Type: Application
    Filed: December 18, 2013
    Publication date: June 18, 2015
    Inventors: Jared M. Pent, Juan Enrique Portillo Bilbao, Perry L. Johnson, Esam Abu-Irshaid, Walter R. Laster, Scott M. Martin, Rafik N. Rofail
  • Patent number: 9038393
    Abstract: A fuel gas cooling system for a combustion basket spring clip seal support is disclosed. The fuel gas cooling system may be formed from one or more fuel gas supply channels terminating proximate to a spring clip at the intersection between a combustor basket and a transition section such that fuel gas may be supplied to the hot gas path proximate to the intersection between the combustor basket and the transition section. The fuel gas supply channel may create an intermediate fuel gas burn at this intersection, which may reduce the firing temperature at the fuel nozzles and reduce NOx emissions.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: May 26, 2015
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Samer P. Wasif, Muzaffer Sutcu, Walter R. Laster
  • Patent number: 8959888
    Abstract: An emissions control system for a gas turbine engine including a flow-directing structure (24) that delivers combustion gases (22) from a burner (32) to a turbine. The emissions control system includes: a conduit (48) configured to establish fluid communication between compressed air (22) and the combustion gases within the flow-directing structure (24). The compressed air (22) is disposed at a location upstream of a combustor head-end and exhibits an intermediate static pressure less than a static pressure of the combustion gases within the combustor (14). During operation of the gas turbine engine a pressure difference between the intermediate static pressure and a static pressure of the combustion gases within the flow-directing structure (24) is effective to generate a fluid flow through the conduit (48).
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: February 24, 2015
    Assignee: Siemens Energy, Inc.
    Inventors: Walter R. Laster, Reinhard Schilp, David J. Wiebe
  • Publication number: 20140196465
    Abstract: An apparatus and method for lean/rich combustion in a gas turbine engine (10), which includes a combustor (12), a transition (14) and a combustor extender (16) that is positioned between the combustor (12) and the transition (14) to connect the combustor (12) to the transition (14). Openings (18) are formed along an outer surface (20) of the combustor extender (16). The gas turbine (10) also includes a fuel manifold (28) to extend along the outer surface (20) of the combustor extender (16), with fuel nozzles (30) to align with the respective openings (18). A method (200) for axial stage combustion in the gas turbine engine (10) is also presented.
    Type: Application
    Filed: January 11, 2013
    Publication date: July 17, 2014
    Inventors: Walter R. Laster, Peter Szedlacsek
  • Patent number: 8661779
    Abstract: A fuel injector (36) for alternate fuels (26A, 26B) with different energy densities. Vanes (47B) extend radially from a fuel delivery tube structure (20B) with first and second fuel supply channels (19A, 19B). Each vane has first and second radial passages (21A, 21B) communicating with the respective fuel supply channels, and first and second sets of apertures (23A, 23B). The first fuel supply channel, first radial passage, and first apertures form a first fuel delivery pathway providing a first fuel flow rate at a given fuel delivery pathway backpressure that is essentially common to both sets of fuel delivery pathway apertures. The second fuel supply channel, second radial passage, and second apertures form a second fuel delivery pathway providing a second fuel flow rate that may be at least 1 about twice the first fuel flow rate at the given fuel delivery pathway backpressure.
    Type: Grant
    Filed: January 20, 2009
    Date of Patent: March 4, 2014
    Assignee: Siemens Energy, Inc.
    Inventors: Walter R. Laster, Weidong Cai, Timothy A. Fox, Kyle L. Landry
  • Patent number: 8495982
    Abstract: A fuel shroud assembly (100) into which fuel (118) is injected for mixing with an air stream (120) in a fuel manifold. The shroud assembly (100) comprises a plurality of parallel fuel scoops (102) each receiving the injected fuel (118). The fuel stream (118) flows through each scoop (102), exiting at an open scoop end (114A). The air stream (120) flows between scoops, creating a shear region proximate each scoop end (114A) where the fuel exits. The shear causes mixing of the air (120) and the fuel (118) streams, wherein the degree of mixing is not dependent on the momentum ratio of the air (120) or fuel (118) streams.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: July 30, 2013
    Assignee: Siemens Energy, Inc.
    Inventors: Walter R. Laster, Elizabeth R. Colore, David A. Little
  • Publication number: 20130167538
    Abstract: A fuel shroud assembly (100) into which fuel (118) is injected for mixing with an air stream (120) in a fuel manifold. The shroud assembly (100) comprises a plurality of parallel fuel scoops (102) each receiving the injected fuel (118). The fuel stream (118) flows through each scoop (102), exiting at an open scoop end (114A). The air stream (120) flows between scoops, creating a shear region proximate each scoop end (114A) where the fuel exits. The shear causes mixing of the air (120) and the fuel (118) streams, wherein the degree of mixing is not dependent on the momentum ratio of the air (120) or fuel (118) streams.
    Type: Application
    Filed: April 19, 2007
    Publication date: July 4, 2013
    Inventors: Walter R. Laster, Elizabeth R. Colore, David A. Little
  • Publication number: 20130133330
    Abstract: An emissions control system for a gas turbine engine including a flow-directing structure (24) that delivers combustion gases (22) from a burner (32) to a turbine. The emissions control system includes: a conduit (48) configured to establish fluid communication between compressed air (22) and the combustion gases within the flow-directing structure (24). The compressed air (22) is disposed at a location upstream of a combustor head-end and exhibits an intermediate static pressure less than a static pressure of the combustion gases within the combustor (14). During operation of the gas turbine engine a pressure difference between the intermediate static pressure and a static pressure of the combustion gases within the flow-directing structure (24) is effective to generate a fluid flow through the conduit (48).
    Type: Application
    Filed: November 28, 2011
    Publication date: May 30, 2013
    Inventors: WALTER R. LASTER, Reinhard Schilp, David J. Wiebe
  • Patent number: 8307653
    Abstract: A catalytic oxidation module for a catalytic combustor of a gas turbine engine is provided. The catalytic oxidation module comprises a plurality of spaced apart catalytic elements for receiving a fuel-air mixture over a surface of the catalytic elements. The plurality of catalytic elements includes at least one primary catalytic element comprising a monometallic catalyst and secondary catalytic elements adjacent the primary catalytic element comprising a multi-component catalyst. Ignition of the monometallic catalyst of the primary catalytic element is effective to rapidly increase a temperature within the catalytic oxidation module to a degree sufficient to ignite the multi-component catalyst.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: November 13, 2012
    Assignee: Siemens Energy, Inc.
    Inventors: Elvira V. Anoshkina, Walter R. Laster
  • Publication number: 20120047904
    Abstract: A fuel gas cooling system for a combustion basket spring clip seal support is disclosed. The fuel gas cooling system may be formed from one or more fuel gas supply channels terminating proximate to a spring clip at the intersection between a combustor basket and a transition section such that fuel gas may be supplied to the hot gas path proximate to the intersection between the combustor basket and the transition section. The fuel gas supply channel may create an intermediate fuel gas burn at this intersection, which may reduce the firing temperature at the fuel nozzles and reduce NOx emissions.
    Type: Application
    Filed: August 27, 2010
    Publication date: March 1, 2012
    Inventors: Samer P. Wasif, Muzaffer Sutcu, Walter R. Laster
  • Patent number: 8113000
    Abstract: A pre-mixer assembly associated with a fuel supply system for mixing of air and fuel upstream from a main combustion zone in a gas turbine engine. The pre-mixer assembly includes a swirler assembly disposed about a fuel injector of the fuel supply system and a pre-mixer transition member. The swirler assembly includes a forward end defining an air inlet and an opposed aft end. The pre-mixer transition member has a forward end affixed to the aft end of the swirler assembly and an opposed aft end defining an outlet of the pre-mixer assembly. The aft end of the pre-mixer transition member is spaced from a base plate such that a gap is formed between the aft end of the pre-mixer transition member and the base plate for permitting a flow of purge air therethrough to increase a velocity of the air/fuel mixture exiting the pre-mixer assembly.
    Type: Grant
    Filed: September 15, 2008
    Date of Patent: February 14, 2012
    Assignee: Siemens Energy, Inc.
    Inventors: Walter R. Laster, Domenico Gambacorta
  • Publication number: 20100192592
    Abstract: A catalytic oxidation module for a catalytic combustor of a gas turbine engine is provided. The catalytic oxidation module comprises a plurality of spaced apart catalytic elements for receiving a fuel-air mixture over a surface of the catalytic elements. The plurality of catalytic elements includes at least one primary catalytic element comprising a monometallic catalyst and secondary catalytic elements adjacent the primary catalytic element comprising a multi-component catalyst. Ignition of the monometallic catalyst of the primary catalytic element is effective to rapidly increase a temperature within the catalytic oxidation module to a degree sufficient to ignite the multi-component catalyst.
    Type: Application
    Filed: February 2, 2009
    Publication date: August 5, 2010
    Inventors: Elvira V. Anoshkina, Walter R. Laster
  • Patent number: 7752850
    Abstract: A combustor (22) for a gas turbine (10) includes a main burner oxidizer flow path (34) delivering a first portion (32) of an oxidizer flow (e.g., 16) to a main burner (28) of the combustor and a pilot oxidizer flow path (38) delivering a second portion (36) of the oxidizer flow to a pilot (30) of the combustor. The combustor also includes a flow controller (42) disposed in the pilot oxidizer flow path for controlling an amount of the second portion delivered to the pilot.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: July 13, 2010
    Assignee: Siemens Energy, Inc.
    Inventors: Walter R. Laster, Ramarao V. Bandaru
  • Publication number: 20100077760
    Abstract: A fuel injector (36) for alternate fuels (26A, 26B) with energy densities that differ by at least about a factor of two. Vanes (47B) extend radially from a fuel delivery tube structure (20B) with first and second fuel supply channels (19A, 19B). Each vane has first and second radial passages (21A, 21B) communicating with the respective fuel supply channels, and first and second sets of apertures (23A, 23B) between the respective radial passages and the surface (49) of the vane. The first fuel supply channel, first radial passage, and first apertures form a first fuel delivery pathway providing a first fuel flow rate at a given backpressure. The second fuel supply channel, second radial passage, and second apertures form a second fuel delivery pathway providing a second fuel flow rate that may be at least about twice first fuel flow rate at the given backpressure.
    Type: Application
    Filed: January 20, 2009
    Publication date: April 1, 2010
    Applicant: SIEMENS ENERGY, INC.
    Inventors: Walter R. Laster, Weidong Cai, Timothy A. Fox, Kyle L. Landry
  • Publication number: 20100064691
    Abstract: A pre-mixer assembly associated with a fuel supply system for mixing of air and fuel upstream from a main combustion zone in a gas turbine engine. The pre-mixer assembly includes a swirler assembly disposed about a fuel injector of the fuel supply system and a pre-mixer transition member. The swirler assembly includes a forward end defining an air inlet and an opposed aft end. The pre-mixer transition member has a forward end affixed to the aft end of the swirler assembly and an opposed aft end defining an outlet of the pre-mixer assembly. The aft end of the pre-mixer transition member is spaced from a base plate such that a gap is formed between the aft end of the pre-mixer transition member and the base plate for permitting a flow of purge air therethrough to increase a velocity of the air/fuel mixture exiting the pre-mixer assembly.
    Type: Application
    Filed: September 15, 2008
    Publication date: March 18, 2010
    Inventors: Walter R. Laster, Domenico Gambacorta