Patents by Inventor Walter T. Matuszek

Walter T. Matuszek has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8715545
    Abstract: The present systems and methods utilize a polyamic acid solution as a precursor to form a polyimide bead having desired properties. The polyamic acid solution may be formed into a polyamic acid droplet. The polyamic acid droplet is then processed to form a polyamic acid bead, such as by extraction of solvent to concentrate the polyamic acid or by partial chemical imidization of the polyamic acid. The polyamic acid bead is then better able to retain its shape during subsequent processing steps, such as drying and pressurizing, before final thermal imidization.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: May 6, 2014
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Dennis G. Peiffer, Barbara Carstensen, Richard S. Polizzotti, Arnold Lustiger, David C. Dalrymple, Walter T. Matuszek
  • Publication number: 20120223450
    Abstract: The present systems and methods utilize a polyamic acid solution as a precursor to form a polyimide bead having desired properties. The polyamic acid solution may be formed into a polyamic acid droplet. The polyamic acid droplet is then processed to form a polyamic acid bead, such as by extraction of solvent to concentrate the polyamic acid or by partial chemical imidization of the polyamic acid. The polyamic acid bead is then better able to retain its shape during subsequent processing steps, such as drying and pressurizing, before final thermal imidization.
    Type: Application
    Filed: September 3, 2010
    Publication date: September 6, 2012
    Inventors: Dennis G. Peiffer, Barbara Carstensen, Richard S. Polizzotti, Arnold Lustiger, David C. Dalrymple, Walter T. Matuszek
  • Patent number: 7482402
    Abstract: The present invention is directed generally to fiber reinforced polypropylene compositions, and the beneficial mechanical properties imparted by such compositions. The fiber reinforced polypropylene compositions include at least 25 wt % polypropylene based polymer, from 5 to 60 wt % organic fiber, and from 0 to 60 wt % inorganic filler. Lubricant may also be optionally incorporated into the composition. Articles molded from these fiber reinforced polypropylene compositions have a flexural modulus of at least 300,000 psi, and exhibit ductility during instrumented impact testing. The fiber reinforced polypropylene compositions of the present invention are particularly suitable for making molded articles including, but not limited to household appliances, automotive parts, and boat hulls.
    Type: Grant
    Filed: December 13, 2005
    Date of Patent: January 27, 2009
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Arnold Lustiger, Jeffrey Valentage, Walter T. Matuszek
  • Publication number: 20080214703
    Abstract: The present disclosure is directed generally to polyester fiber reinforced polypropylene resin pellets and methods for producing therein. The polyester fiber reinforced polypropylene resin pellets include at least 25 wt % polypropylene based polymer; from 10 to 40 wt % polyester fiber; from 0 to 60 wt % inorganic filler; and from 0 to 0.2 wt % lubricant. The polyester fiber is incorporated into the resin pellets by feeding chopped fiber or continuous fiber unwound from one or more spools. Articles molded from the polyester fiber reinforced polypropylene resin pellets exhibit a drop dart impact resistance that is dependent on the pellet length and whether the PET fiber is incorporated as chopped fiber or continuous fiber during the extrusion compounding process. Articles molded from the polyester fiber reinforced polypropylene resin pellets find application as automotive parts, household appliance parts, or boat hulls.
    Type: Application
    Filed: March 7, 2008
    Publication date: September 4, 2008
    Inventors: Amold Lustiger, Walter T. Matuszek
  • Publication number: 20080081876
    Abstract: The present invention is directed generally processes for making fiber reinforced polystyrene compositions including from 5 to 50 wt % organic fiber, and from 0 to 60 wt % inorganic filler in a matrix of an atactic polystyrene based polymer. The process includes extrusion compounding the atactic polystyrene based polymer, the organic fiber, and the inorganic filler to form a fiber reinforced polystyrene resin, which is subsequently molded to form an article with a flexural modulus of at least 350,000 psi, and that exhibits ductility during instrumented impact testing. Extrusion compounding processes whereby the organic fiber is continuously fed to the extruder hopper by unwinding from one or more spools, and uniformly dispersing the fiber in the composites via twin screws having a combination of conveying and kneading elements are also disclosed.
    Type: Application
    Filed: October 3, 2006
    Publication date: April 3, 2008
    Inventors: Arnold Lustiger, Walter T. Matuszek
  • Publication number: 20080081862
    Abstract: The present invention is directed generally to fiber reinforced polystyrene compositions, and the beneficial mechanical properties imparted by such compositions. The fiber reinforced polystyrene compositions include from 5 to 50 wt % organic fiber, and from 0 to 60 wt % inorganic filler in a matrix of an atactic polystyrene based polymer. Lubricant may also be optionally incorporated into the composition to assist with fiber pullout. Colored fiber may also be optionally incorporated into the composition to yield an article with a cloth-like appearance. Articles molded from these fiber reinforced polystyrene compositions have a flexural modulus of at least 350,000 psi, and exhibit ductility during instrumented impact testing. The fiber reinforced polystyrene compositions are suitable for making molded articles including, but not limited to, household appliances, automotive parts, and boat hulls.
    Type: Application
    Filed: October 3, 2006
    Publication date: April 3, 2008
    Inventors: Arnold Lustiger, Walter T. Matuszek