Patents by Inventor Walter Voit

Walter Voit has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11739177
    Abstract: The present disclosure relates to sealed isocyanate resin compositions. The resin compositions may be used for additive manufacturing. One embodiment of the invention includes a photopolymerizable resin for additive manufacturing, the resin comprising: a blocked isocyanate; at least one monomer or oligomer; and a multifunctional nucleophile.
    Type: Grant
    Filed: November 25, 2020
    Date of Patent: August 29, 2023
    Assignees: Adaptive 3D Technologies, Board of Regents, The University of Texas System
    Inventors: Benjamin R. Lund, Walter Voit
  • Patent number: 11697706
    Abstract: The present disclosure relates to sealed isocyanate resin compositions. The resin compositions may be used for additive manufacturing. One embodiment of the invention includes a photopolymerizable resin for additive manufacturing, the resin comprising: a blocked isocyanate; at least one monomer or oligomer; and a multifunctional nucleophile.
    Type: Grant
    Filed: April 19, 2019
    Date of Patent: July 11, 2023
    Assignees: Adaptive 3D Technologies, Board of Regents, The University of Texas System
    Inventors: Benjamin R. Lund, Walter Voit
  • Patent number: 11655332
    Abstract: The present disclosure relates to sealed isocyanate resin compositions. The resin compositions may be used for additive manufacturing. One embodiment of the invention includes a photopolymerizable resin for additive manufacturing, the resin comprising: a blocked isocyanate; at least one monomer or oligomer; and a multifunctional nucleophile.
    Type: Grant
    Filed: November 25, 2020
    Date of Patent: May 23, 2023
    Assignees: Adaptive 3D Technologies, Board of Regents, The University of Texas System
    Inventors: Benjamin R. Lund, Walter Voit
  • Patent number: 11591485
    Abstract: A method of three-dimensional stereolithography printing a thiourethane polymer part using the vat resin. Adding a resin to a vat of a three-dimensional stereolithography printer, the resin a liquid mixture including: a first type of monomer including two or more thiol functional groups, a second type of monomer including two or more isocyanate functional groups, a photolatent base, an anionic step-growth polymerization reaction inhibitor and a light absorber. The photolatent base is decomposable upon exposure to a light to form a non-nucleophillic base catalyst having a pKa greater than 7. The anionic step-growth polymerization reaction inhibitor has an acidic group configured to form an acid-base pair with the non-nucleophillic base. The light absorber has an absorbance in the liquid mixture that is greater than an absorbance of the photolatent base at a wavelength of the light used for the exposure.
    Type: Grant
    Filed: April 19, 2022
    Date of Patent: February 28, 2023
    Assignees: Board of Regents, The University of Texas System, Adaptive 3D Technologies
    Inventors: Gregory T. Ellson, Benjamin R. Lund, Walter Voit
  • Patent number: 11584867
    Abstract: Bio-electronic devices including a substrate layer composed of a thiol-ene shape memory polymer, the polymer including, a sequential chain of a first type of monomer covalently bonded to a second type of monomer via thiol-ene linkages that form a backbone of the polymer, and. at least one patterned gold interconnect line adhered to the substrate layer.
    Type: Grant
    Filed: January 6, 2022
    Date of Patent: February 21, 2023
    Assignee: Board of Regents, The University of Texas System
    Inventors: Walter Voit, Melanie Ecker, Seyed Mahmoud Hosseini
  • Patent number: 11448033
    Abstract: A wellbore isolation device includes a mandrel, a sealing element disposed around at least a portion of the mandrel, and a delay coating disposed on at least a portion of an outer surface of the sealing element. The sealing element includes a swellable material and the delay coating covers a cross-linked polymer. The delay coating is configured to swell or degrade in a wellbore fluid.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: September 20, 2022
    Assignees: HALLIBURTON ENERGY SERVICES, INC., BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Michael Linley Fripp, Xiaoguang Allan Zhong, Kejia Yang, Walter Voit, Nelson Yan Loo Lee, Yong Dai Tan, Bing Hong Chee, Ee Wen Wong
  • Patent number: 11427718
    Abstract: A vat resin for three-dimensional stereolithography printing of a thiourethane polymer part comprising a liquid mixture including a first type of monomer, a second type of monomer, a photolatent base decomposable upon exposure to a light to form a non-nucleophillic base catalyst having a pKa greater than 7, an anionic step-growth polymerization reaction inhibitor having an acidic group configured to form an acid-base pair with the non-nucleophillic base and a light absorber having an absorbance in the liquid mixture that is greater than an absorbance of the photolatent base at a wavelength of the light used for the exposure. Methods of preparing the vat resin and three-dimensional stereolithography printing a thiourethane polymer part using the vat resin are also disclosed.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: August 30, 2022
    Assignees: Board of Regents, The University of Texas System, Adaptive 3D Technologies
    Inventors: Gregory T. Ellson, Benjamin R. Lund, Walter Voit
  • Publication number: 20220243078
    Abstract: A method of three-dimensional stereolithography printing a thiourethane polymer part using the vat resin. Adding a resin to a vat of a three-dimensional stereolithography printer, the resin a liquid mixture including: a first type of monomer including two or more thiol functional groups, a second type of monomer including two or more isocyanate functional groups, a photolatent base, an anionic step-growth polymerization reaction inhibitor and a light absorber. The photolatent base is decomposable upon exposure to a light to form a non-nucleophillic base catalyst having a pKa greater than 7. The anionic step-growth polymerization reaction inhibitor has an acidic group configured to form an acid-base pair with the non-nucleophillic base. The light absorber has an absorbance in the liquid mixture that is greater than an absorbance of the photolatent base at a wavelength of the light used for the exposure.
    Type: Application
    Filed: April 19, 2022
    Publication date: August 4, 2022
    Inventors: Gregory T. Ellson, Benjamin R. Lund, Walter Voit
  • Publication number: 20220127493
    Abstract: Bio-electronic devices including a substrate layer composed of a thiol-ene shape memory polymer, the polymer including, a sequential chain of a first type of monomer covalently bonded to a second type of monomer via thiol-ene linkages that form a backbone of the polymer, and. at least one patterned gold interconnect line adhered to the substrate layer.
    Type: Application
    Filed: January 6, 2022
    Publication date: April 28, 2022
    Inventors: Walter Voit, Melanie Ecker, Seyed Mahmoud Hosseini
  • Publication number: 20220088873
    Abstract: A system for producing a three-dimensional object from a fluid medium includes image processing units. The fluid medium is configured to solidify when subjected to a prescribed light stimulation. Each image processing unit includes at least one light emitting source configured to emit light, and at least one minor system configured to reflect the light emitted by the light emitting source. The minor system includes a manipulating system for adjusting the direction of the emitted light, a control system for controlling the manipulating system, and at least one optical element configured to manipulate the emitted light and to project the emitted light onto an area of a surface of the fluid medium to form an image on the surface. The image processing units are configured to form corresponding images on the surface, and are configured to be movable at least in a lateral direction relative to the surface.
    Type: Application
    Filed: January 24, 2020
    Publication date: March 24, 2022
    Applicants: Adaptive 3D Technologies, LLC, Board of Regents, The University of Texas System
    Inventors: Walter VOIT, Benjamin LUND, Daniel ZAMORANO, Caleb LUND, Stephen KAY, Eric PARKER
  • Patent number: 11261345
    Abstract: A thiol-ene shape memory polymer including a sequential chain of a first type of monomer covalently bonded to a second type of monomer via thiol-ene linkages that form a backbone of the polymer. The first type of monomer includes two or more thiol functional groups and the second type of monomer includes two or more alkene functional groups. The sequential chain of the covalently bonded first and second types of monomers forming the polymer backbone is free of ester groups. Also disclosed in a method of synthesizing the thiol-ene shape memory polymer, a bio-electronic device including a substrate layer composed of the thiol-ene shape memory polymer, and a method of manufacturing the bio-electronic device.
    Type: Grant
    Filed: November 7, 2019
    Date of Patent: March 1, 2022
    Assignee: Board of Regents, The University of Texas System
    Inventors: Walter Voit, Melanie Ecker, Seyed Mahmoud Hosseini
  • Patent number: 11155670
    Abstract: An amorphous thermoset thiourethane polymer, comprising a sequential chain of a first type of monomer covalently bonded to a second type of monomer via thiourethane linkages, wherein the first type of monomer includes two or more thiol functional groups and the second type of monomer includes two or more isocyanate functional groups. Methods of synthesizing the polymer, bio-electronic devices comprising the polymer and methods of manufacturing such devices are disclosed.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: October 26, 2021
    Assignee: Board of Regents, The University of Texas System
    Inventors: Gregory T. Ellson, Walter Voit
  • Publication number: 20210323217
    Abstract: Provided are methods and systems for manufacturing and using heat-shrink elastomeric. An example method of manufacturing a heat-shrink elastomeric element comprises providing a thermoplastic elastomeric element having a first shape; modifying the thermoplastic elastomeric element to produce a thermoset elastomeric element having the first shape; heating the thermoset elastomeric element to a temperature of at least the glass transition temperature of the thermoset elastomeric element; adjusting the first shape of the thermoset elastomeric element to produce a second shape with at least one dimension greater than that of the first shape; and cooling the thermoset elastomeric element to a temperature below that of the glass transition temperature of the thermoset elastomeric element to produce the heat-shrink elastomeric element.
    Type: Application
    Filed: June 23, 2021
    Publication date: October 21, 2021
    Inventors: Michael L. FRIPP, Kejia YANG, Radu REIT, Benjamin LUND, Walter VOIT
  • Publication number: 20210308341
    Abstract: The invention discloses a method for adhering a metal layer to a polymer substrate and device manufacture therefrom. The metal layer is deposited on a sacrificial substrate of a mold to form part of an interior surface of the mold, and a solution of monomers is deposited on the metal layer. The monomers are then polymerized together to form the polymer substrate on the metal layer. Then the polymer substrate is removed from the mold such that the metal layer is removed from the mold and adhered to the polymer substrate.
    Type: Application
    Filed: April 19, 2021
    Publication date: October 7, 2021
    Inventors: Taylor Ware, Walter Voit
  • Patent number: 11065807
    Abstract: Provided are methods and systems for manufacturing and using heat-shrink elastomeric. An example method of manufacturing a heat-shrink elastomeric element comprises providing a thermoplastic elastomeric element having a first shape; modifying the thermoplastic elastomeric element to produce a thermoset elastomeric element having the first shape; heating the thermoset elastomeric element to a temperature of at least the glass transition temperature of the thermoset elastomeric element; adjusting the first shape of the thermoset elastomeric element to produce a second shape with at least one dimension greater than that of the first shape; and cooling the thermoset elastomeric element to a temperature below that of the glass transition temperature of the thermoset elastomeric element to produce the heat-shrink elastomeric element.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: July 20, 2021
    Assignees: The University of Texas System Board of Regents, Halliburton Energy Services, Inc.
    Inventors: Michael L. Fripp, Kejia Yang, Radu Reit, Benjamin Lund, Walter Voit
  • Publication number: 20210189033
    Abstract: The present disclosure relates to sealed isocyanate resin compositions. The resin compositions may be used for additive manufacturing. One embodiment of the invention includes a photopolymerizable resin for additive manufacturing, the resin comprising: a blocked isocyanate; at least one monomer or oligomer; and a multifunctional nucleophile.
    Type: Application
    Filed: April 19, 2019
    Publication date: June 24, 2021
    Inventors: Benjamin R. LUND, Walter VOIT
  • Publication number: 20210170674
    Abstract: A semi-crystalline thiourethane polymer. The semi-crystalline thiourethane polymer comprises a sequential chain of a first type of monomer covalently bonded to a second type of monomer via thiourethane linkages. Each of the first type of monomer includes two or more thiol functional groups and each of the second type of monomer includes two or more isocyanate functional groups. The first and second types of monomers are polymerized together in an anionic step-growth polymerization reaction that is catalyzed by a non-nucleophillic base having a pKa greater than 7, produced by photo-initiated decomposition of a photolatent base. A method of synthesizing, and polymer jetting and stereolithography methods of manufacturing a polymer part, are also disclosed.
    Type: Application
    Filed: December 17, 2020
    Publication date: June 10, 2021
    Inventors: Gregory T. ELLSON, Benjamin R. LUND, Walter VOIT
  • Publication number: 20210156220
    Abstract: A wellbore isolation device includes a mandrel, a sealing element disposed around at least a portion of the mandrel, and a delay coating disposed on at least a portion of an outer surface of the sealing element. The sealing element includes a swellable material and the delay coating covers a cross-linked polymer. The delay coating is configured to swell or degrade in a wellbore fluid.
    Type: Application
    Filed: April 5, 2019
    Publication date: May 27, 2021
    Inventors: Michael Linley FRIPP, Xiaoguang Allan ZHONG, Kejia YANG, Walter VOIT, Nelson Yan Loo LEE, Yong Dai TAN, Bing Hong CHEE, Ee Wen WONG
  • Patent number: 11013835
    Abstract: The invention discloses a method for adhering a metal layer to a polymer substrate. The metal layer is deposited on a sacrificial substrate of a mold to form part of an interior surface of the mold, and a solution of monomers is deposited on the metal layer. The monomers are then polymerized together to form the polymer substrate on the metal layer. Then the polymer substrate is removed from the mold such that the metal layer is removed from the mold and adhered to the polymer substrate.
    Type: Grant
    Filed: February 3, 2013
    Date of Patent: May 25, 2021
    Assignee: Board of Regents, The University of Texas System
    Inventors: Taylor Ware, Walter Voit
  • Publication number: 20210087328
    Abstract: The present disclosure relates to sealed isocyanate resin compositions. The resin compositions may be used for additive manufacturing. One embodiment of the invention includes a photopolymerizable resin for additive manufacturing, the resin comprising: a blocked isocyanate; at least one monomer or oligomer; and a multifunctional nucleophile.
    Type: Application
    Filed: November 25, 2020
    Publication date: March 25, 2021
    Inventors: Benjamin R. LUND, Walter VOIT