Patents by Inventor Walther Lutz

Walther Lutz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230252214
    Abstract: Methods for providing fill patterns for IC devices are disclosed. An example method includes detecting a first device and a second device in an image, e.g., a two- or three-dimensional image representing the IC device. A line is defined based on the devices. The line divides the image into a first section and a second section. A first structure is generated based on the first device. A second structure is generated based on the second device. The second structure is a mirror image of the first structure across the line. A first fill pattern is generated in the first section based on the first structure. A second fill pattern is generated in the second section based on the first fill pattern, e.g., through a reflection transformation of the first fill pattern across the line. The two fill patterns represent patterns of fill structures to be included in the IC device.
    Type: Application
    Filed: February 8, 2022
    Publication date: August 10, 2023
    Inventors: Richard Hudeczek, Carla Moran Guizan, Peter Baumgartner, Richard Geiger, Alexander Bechtold, Uwe Hodel, Walther Lutz, Georgios Panagopoulos, Johannes Xaver Rauh, Roshini Sachithanandan
  • Publication number: 20230197527
    Abstract: IC devices including semiconductor devices isolated by BSRs are disclosed. An example IC device includes a first and a second semiconductor devices, a support structure, and a BSR. The BSR defines boundaries of a first and second section in the support structure. At least a portion of the first semiconductor device is in the first section, and at least a portion of the second semiconductor device is in the second section. The first semiconductor device is isolated from the second semiconductor device by the BSR. Signals from the first semiconductor device would not be transmitted to the second semiconductor device through the support structure. The BSR may be connected to a TSV or be biased. The IC device may include additional BSRs to isolate the first and second semiconductor devices. An BSR may be a power rail used for delivering power.
    Type: Application
    Filed: December 17, 2021
    Publication date: June 22, 2023
    Applicant: Intel Corporation
    Inventors: Richard Geiger, Peter Baumgartner, Alexander Bechtold, Uwe Hodel, Richard Hudeczek, Walther Lutz, Carla Moran Guizan, Georgios Panagopoulos, Johannes Xaver Rauh, Roshini Sachithanandan
  • Publication number: 20230187313
    Abstract: IC devices including transmission lines are disclosed. An example IC device includes two electrically conductive layers (first and second layers) and a support structure between the two electrically conductive layers. The first layer is coupled to transistors over or at least partially in the support structure. A shield of a transmission is placed in the first layer. Conductors of the transmission line are placed in the second layer and are coupled to the first layer by TSVs. Another example IC device includes three electrically conductive layers (first, second, and third layers). The first layer is coupled to transistors over or at least partially in the support structure. A shield of a transmission line is placed in the second layer and conductors of the transmission line are placed in the third layer. The conductors are coupled to the first layer by TSVs and coupled to the second layer by vias.
    Type: Application
    Filed: December 14, 2021
    Publication date: June 15, 2023
    Applicant: Intel Corporation
    Inventors: Carla Moran Guizan, Peter Baumgartner, Richard Geiger, Alexander Bechtold, Uwe Hodel, Richard Hudeczek, Walther Lutz, Georgios Panagopoulos, Johannes Xaver Rauh, Roshini Sachithanandan
  • Publication number: 20230187477
    Abstract: Capacitors based on stacks of nanoribbons and associated devices and systems are disclosed. In particular, a stack of at least two nanoribbons may be used to provide a two-terminal device referred to herein as a “nanoribbon-based capacitor,” where one nanoribbon serves as a first capacitor electrode and another nanoribbon serves as a second capacitor electrode. Using portions of nanoribbon stacks to implement nanoribbon-based capacitors could provide an appealing alternative to conventional capacitor implementations because it would require only modest process changes compared to fabrication of nanoribbon-based FETs and because nanoribbon-based capacitors could be placed close to active devices. Furthermore, with a few additional process steps, nanoribbon-based capacitors may, advantageously, be extended to implement other circuit blocks such as nanoribbon-based BJTs or three-nanoribbon arrangements with a common connection between two anodes and a separate connection to a cathode.
    Type: Application
    Filed: December 12, 2021
    Publication date: June 15, 2023
    Applicant: Intel Corporation
    Inventors: Martin Ostermayr, Georg Seidemann, Walther Lutz, Joachim Assenmacher
  • Publication number: 20230095162
    Abstract: A semiconductor device is provided. The semiconductor device comprises a semiconductor die comprising a semiconductor substrate and a plurality of transistors arranged at a front side of the semiconductor substrate. Further, the semiconductor die comprises a first electrically conductive structure extending from the front side of the semiconductor substrate to a backside of the semiconductor substrate and a second electrically conductive structure extending from the front side of the semiconductor substrate to the backside of the semiconductor substrate. The semiconductor device further comprises an interposer directly attached to the backside of the semiconductor substrate. The interposer comprises a first trace electrically connected to the first electrically conductive structure of the semiconductor die. Further the interposer comprises the first trace or a second trace electrically connected to the second electrically conductive structure of the semiconductor die.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Georg SEIDEMANN, Martin OSTERMAYR, Walther LUTZ, Joachim ASSENMACHER
  • Publication number: 20230102133
    Abstract: A semiconductor die is disclosed, including circuitry comprising a transistor at a frontside of a semiconductor substrate, and a backside inductor at a backside of the semiconductor substrate. The backside inductor is electrically connected to the transistor of the circuitry.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Martin OSTERMAYR, Walther LUTZ, Joachim ASSENMACHER, Georg SEIDEMANN
  • Publication number: 20230101378
    Abstract: A semiconductor die is disclosed, including a plurality of transistors at a frontside of a semiconductor substrate, a backside inductor at a backside of the semiconductor substrate; and a frontside inductor at the frontside of the semiconductor substrate. The frontside inductor and the backside inductor are inductively coupled.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Peter BAUMGARTNER, Joachim ASSENMACHER, Walther LUTZ, Martin OSTERMAYR, Georg SEIDEMANN
  • Patent number: 7930660
    Abstract: Implementations are presented herein that relate to a standard cell including a measuring structure for controlling process parameters during manufacture of an integrated circuit. A standard cell is formed in a plurality of material layers of an integrated circuit to perform part of a function of the integrated circuit, wherein the plurality of material layers is configured to be patterned by a plurality of mask layers during manufacture of the integrated circuit, wherein the standard cell includes a measuring structure that is placed within boundaries of the standard cell, wherein the measuring structure includes at least one feature in at least one of the plurality of material layers and the plurality of mask layers, wherein the at least one feature is configured to provide measurement results in order to control process parameters during manufacture of one of the material layers and mask layers.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: April 19, 2011
    Assignee: Infineon Technologies AG
    Inventors: Erwin Ruderer, Walther Lutz, Roswitha Deppe
  • Patent number: 7675173
    Abstract: A process of manufacturing a semiconductor circuit includes providing a substrate layer, forming a metal layer above the substrate layer, incorporating circuit components in the substrate layer, and electrically connecting the circuit components to the metal layer. The process includes configuring the circuit components to perform an electrical function of the semiconductor circuit. The semiconductor circuit has a specific electrical conductivity between the substrate layer and the metal layer based on the electrical function performed. The process includes increasing the electrical conductivity between the substrate layer and the metal layer compared with the specific electrical conductivity.
    Type: Grant
    Filed: October 18, 2006
    Date of Patent: March 9, 2010
    Assignee: Infineon Technologies AG
    Inventors: Walther Lutz, Erwin Ruderer
  • Publication number: 20090193367
    Abstract: Implementations are presented herein that relate to a standard cell including a measuring structure.
    Type: Application
    Filed: January 30, 2008
    Publication date: July 30, 2009
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Roswitha Deppe, Walther Lutz, Erwin Ruderer
  • Patent number: 7458053
    Abstract: A multi-pass method for designing at least a portion of a circuit layout on a substrate is provided which includes receiving or generating a first level frame including an electrical component; generating a fill pattern on the first level frame outside of a forbidden area of said first level frame; generating a next level frame, the next level frame including the first level frame and a next level fill area outside of the first level frame; and adding a conductor to the next level frame. The conductor is connected to the electrical component, a first portion of the conductor is in the first level frame and a second portion of the conductor is in the next level fill area.
    Type: Grant
    Filed: August 16, 2006
    Date of Patent: November 25, 2008
    Assignee: Infineon Technologies AG
    Inventors: Erwin Ruderer, Walther Lutz, Bernhard Dobler
  • Publication number: 20080046853
    Abstract: A multi-pass method for designing at least a portion of a circuit layout on a substrate is provided which includes receiving or generating a first level frame including an electrical component; generating a fill pattern on the first level frame outside of a forbidden area of said first level frame; generating a next level frame, the next level frame including the first level frame and a next level fill area outside of the first level frame; and adding a conductor to the next level frame. The conductor is connected to the electrical component, a first portion of the conductor is in the first level frame and a second portion of the conductor is in the next level fill area.
    Type: Application
    Filed: August 16, 2006
    Publication date: February 21, 2008
    Applicant: Infineon Technologies AG
    Inventors: Erwin Ruderer, Walther Lutz, Bernhard Dobler
  • Publication number: 20070096216
    Abstract: A process of manufacturing a semiconductor circuit includes providing a substrate layer, forming a metal layer above the substrate layer, incorporating circuit components in the substrate layer, and electrically connecting the circuit components to the metal layer. The process includes configuring the circuit components to perform an electrical function of the semiconductor circuit. The semiconductor circuit has a specific electrical conductivity between the substrate layer and the metal layer based on the electrical function performed. The process includes increasing the electrical conductivity between the substrate layer and the metal layer compared with the specific electrical conductivity.
    Type: Application
    Filed: October 18, 2006
    Publication date: May 3, 2007
    Inventors: Walther Lutz, Erwin Ruderer