Patents by Inventor Wan-Hsin Hsieh

Wan-Hsin Hsieh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210128234
    Abstract: The present disclosure provides a tissue imaging method, including: inserting an electronic probe into a lesion area of a patient and ablating tissue of the lesion area; capturing a first image including the lesion area by using an imaging apparatus; vibrating the electronic probe to generate displacement of at least a portion of the tissue of the lesion area, and capturing a second image including the lesion area by using the imaging apparatus; generating a correlation image according to a correlation between the first image and the second image; and computing an ablation boundary according to the correlation image.
    Type: Application
    Filed: November 5, 2020
    Publication date: May 6, 2021
    Applicant: Industrial Technology Research Institute
    Inventors: Wan-Hsin Hsieh, Yu-Yao Wang, Zong-Yi Hsiao, Hui-Hsin Lu
  • Patent number: 10376235
    Abstract: A needle guide system is provided. The needle guide system includes a puncture device, an ultrasound transducer, a first orientation detector, a second orientation detector, a proximity detector and a processor. The ultrasound transducer is configured to obtain an ultrasound image. The first orientation detector is disposed on the puncture device, and the second orientation detector is disposed on the ultrasound transducer. The proximity detector is disposed on at least one of the puncture device and the ultrasound transducer, configured to obtain a relative distance between the puncture device and the ultrasound transducer. The processor is configured to obtain a spatial relationship between the puncture device and the ultrasound transducer by using the first orientation detector, the second orientation detector, and the proximity detector, and predict a trajectory of the puncture device in the ultrasound image according to the spatial relationship.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: August 13, 2019
    Assignees: Industrial Technology Research Institute, National Taiwan University Hospital
    Inventors: Wan-Hsin Hsieh, Hui-Hsin Lu, Chih-Yuan Wang
  • Publication number: 20180168537
    Abstract: A needle guide system is provided. The needle guide system includes a puncture device, an ultrasound transducer, a first orientation detector, a second orientation detector, a proximity detector and a processor. The ultrasound transducer is configured to obtain an ultrasound image. The first orientation detector is disposed on the puncture device, and the second orientation detector is disposed on the ultrasound transducer. The proximity detector is disposed on at least one of the puncture device and the ultrasound transducer, configured to obtain a relative distance between the puncture device and the ultrasound transducer. The processor is configured to obtain a spatial relationship between the puncture device and the ultrasound transducer by using the first orientation detector, the second orientation detector, and the proximity detector, and predict a trajectory of the puncture device in the ultrasound image according to the spatial relationship.
    Type: Application
    Filed: December 21, 2016
    Publication date: June 21, 2018
    Applicants: Industrial Technology Research Institute, National Taiwan University Hospital
    Inventors: Wan-Hsin Hsieh, Hui-Hsin Lu, Chih-Yuan Wang
  • Patent number: 9451898
    Abstract: This invention discloses a system and a method for extracting VF signal in ECG recorded during uninterrupted CPR. The present invention provides a method for extracting a Ventricular fibrillation (VF) signal in Electrocardiography (ECG), comprising: receiving an ECG signal; adding a plurality of shadowing functions to the ECG signal, to obtain a plurality of modification signals; decomposing the plurality of modification signals by using an Empirical Mode Decomposition (EMD) method, to generate a plurality of Intrinsic Mode Functions (IMFs); calculating the sum of IMFs in different frequency regions based on time sequence, dividing by a number of the shadowing signal, to obtain a plurality of modification intrinsic mode functions; combining the plurality of modification IMFs with the same property, to obtain a shape function; modeling the shape functions to obtain a compression signal; and subtracting the compression signal from the ECG signal based on time sequence, to obtain the VF signal.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: September 27, 2016
    Assignee: NATIONAL CENTRAL UNIVERSITY
    Inventors: Men-Tzung Lo, Yung-Hung Wang, Chen Lin, Hsu-Wen Vincent Young, Hsiang-Chih Chang, Lian-Yu Lin, Wan-Hsin Hsieh, Matthew Huei-Ming Ma, Kun Hu
  • Publication number: 20160120429
    Abstract: This invention discloses a system and a method for extracting VF signal in ECG recorded during uninterrupted CPR. The present invention provides a method for extracting a Ventricular fibrillation (VF) signal in Electrocardiography (ECG), comprising: receiving an ECG signal; adding a plurality of shadowing functions to the ECG signal, to obtain a plurality of modification signals; decomposing the plurality of modification signals by using an Empirical Mode Decomposition (EMD) method, to generate a plurality of Intrinsic Mode Functions (IMFs); calculating the sum of IMFs in different frequency regions based on time sequence, dividing by a number of the shadowing signal, to obtain a plurality of modification intrinsic mode functions; combining the plurality of modification IMFs with the same property, to obtain a shape function; modeling the shape functions to obtain a compression signal; and subtracting the compression signal from the ECG signal based on time sequence, to obtain the VF signal.
    Type: Application
    Filed: January 12, 2016
    Publication date: May 5, 2016
    Inventors: Men-Tzung LO, Yung-Hung WANG, Chen LIN, Hsu-Wen Vincent YOUNG, Hsiang-Chih CHANG, Lian-Yu LIN, Wan-Hsin HSIEH, Matthew Huei-Ming MA, Kun HU
  • Patent number: 9259167
    Abstract: This invention discloses a system and method for extracting VF signal in ECG recorded during uninterrupted CPR. The method and system applies an adaptive algorithm incorporating the EMD and least mean square (LMS) filtering to effectively model the CPR artifacts such as chest compression signals. Thus, A VF signal in ECG recorded during uninterrupted CPR can be extracted without deteriorating the reliability of the waveform parameter (i.e. AMSA) of shockability. The present invention enables uninterrupted CPR performed during recording ECG for accessing the shockability, so that an increase the probability of successful resuscitation is achieved.
    Type: Grant
    Filed: July 2, 2014
    Date of Patent: February 16, 2016
    Assignee: NATIONAL CENTRAL UNIVERSITY
    Inventors: Men-Tzung Lo, Wan-Hsin Hsieh, Chen Lin, Yi-Chung Chang, Hsiang-Chih Chang, Lian-Yu Lin, Patrick Chow-In Ko, Wen-Chu Chiang, Matthew Huei-Ming Ma, Kun Hu
  • Publication number: 20160000346
    Abstract: This invention discloses a system and method for extracting VF signal in ECG recorded during uninterrupted CPR. The method and system applies an adaptive algorithm incorporating the EMD and least mean square (LMS) filtering to effectively model the CPR artifacts such as chest compression signals. Thus, A VF signal in ECG recorded during uninterrupted CPR can be extracted without deteriorating the reliability of the waveform parameter (i.e. AMSA) of shockability. The present invention enables uninterrupted CPR performed during recording ECG for accessing the shockability, so that an increase the probability of successful resuscitation is achieved.
    Type: Application
    Filed: July 2, 2014
    Publication date: January 7, 2016
    Inventors: Men-Tzung LO, Wan-Hsin HSIEH, Chen LIN, Yi-Chung CHANG, Hsiang-Chih CHANG, Lian-Yu LIN, Patrick Chow-In KO, Wen-Chu CHIANG, Matthew Huei-Ming MA, Kun HU
  • Patent number: 8902952
    Abstract: A method for acquiring a code phase shift between an input sequence and a reference sequence is provided. The method is to be implemented using an acquisition device that includes a mapping unit configured to transform the input sequence and the reference sequence respectively into an input signal and a reference signal each with a complex phase, a comparison unit configured to compare the input signal with the reference signal so as to obtain a phase coherent indicator, and calculating unit configured to obtain the code phase shift between the input sequence and the reference sequence based on a phase of the phase coherent indicator and a number of bits of the input sequence.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: December 2, 2014
    Assignees: National Chiao Tung University, National Applied Research Laboratories
    Inventors: Ming-Seng Kao, Chieh-Fu Chang, Wan-Hsin Hsieh
  • Patent number: 8862213
    Abstract: A computer-assisted method for quantitative characterization and treatment of ventricular fibrillation includes preprocessing a time series of an atrial fibrillation signal obtained from a patient, segmenting the time series of the AF signal into activation segments by the computer system, obtaining local activation waveforms (LAW) from the activation segments, determining degrees of similarity between the LAWs, and identifying one or more critical regions in the patient's atria if the LAWs have degrees of similarity exceeding a first threshold value.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: October 14, 2014
    Assignee: National Central University
    Inventors: Men-Tzung Lo, Yenn-Jiang Lin, Shih-Ann Chen, Yi-Chung Chang, Chen Lin, Ke-Hsin Hsu, Wan-Hsin Hsieh, Hung-Yi Lee, Norden E. Huang
  • Publication number: 20140031708
    Abstract: A computer-assisted method for quantitative characterization and treatment of ventricular fibrillation includes preprocessing a time series of an atrial fibrillation signal obtained from a patient, segmenting the time series of the AF signal into activation segments by the computer system, obtaining local activation waveforms (LAW) from the activation segments, determining degrees of similarity between the LAWs, and identifying one or more critical regions in the patient's atria if the LAWs have degrees of similarity exceeding a first threshold value.
    Type: Application
    Filed: July 26, 2012
    Publication date: January 30, 2014
    Inventors: Men-Tzung Lo, Yenn-Jiang Lin, Shih-Ann Chen, Yi-Chung Chang, Chen Lin, Ke-Hsin Hsu, Wan-Hsin Hsieh, Hung-Yi Lee, Norden E. Huang
  • Patent number: 8472622
    Abstract: A wireless communication method for transmitting information to the designated region with the boundary defined by the sharp cutoff is provided. Receivers outside the designated region are excluded from retrieving the encoded information. The boundary of designated region is adjustable. The wireless communication method can be applied to clearly defining the accepted region and rejection region in satellite communications. The wireless communication method includes steps of providing an information; encoding the information into an encoded data regarding a designated bit-energy-to-noise-ratio; transmitting the encoded data to form a virtual antenna radiation pattern covering a designated region with boundary defined by the sharp cutoff based on the designated bit-energy-to-noise-ratio; receiving the encoded data; and decoding the encoded data into the original information only when receivers within the designated region with bit-energy-to-noise-ratio no less than the designated bit-energy-to-noise-ratio.
    Type: Grant
    Filed: March 10, 2009
    Date of Patent: June 25, 2013
    Assignee: National Applied Research Laboratories
    Inventors: Chieh-Fu Chang, Wan-Hsin Hsieh, Ming-Seng Kao
  • Publication number: 20130107927
    Abstract: A method for acquiring a code phase shift between an input sequence and a reference sequence is provided. The method is to be implemented using an acquisition device that includes a mapping unit configured to transform the input sequence and the reference sequence respectively into an input signal and a reference signal each with a complex phase, a comparison unit configured to compare the input signal with the reference signal so as to obtain a phase coherent indicator, and calculating unit configured to obtain the code phase shift between the input sequence and the reference sequence based on a phase of the phase coherent indicator and a number of bits of the input sequence.
    Type: Application
    Filed: September 6, 2012
    Publication date: May 2, 2013
    Applicants: National Applied Researach Laboratories, National Chiao Tung University
    Inventors: Ming-Seng Kao, Chieh-Fu Chang, Wan-Hsin Hsieh
  • Publication number: 20100235708
    Abstract: A wireless communication method for transmitting information to the designated region with the boundary defined by the sharp cutoff is provided. Receivers outside the designated region are excluded from retrieving the encoded information. The boundary of designated region is adjustable. The wireless communication method can be applied to clearly defining the accepted region and rejection region in satellite communications. The wireless communication method includes steps of providing an information; encoding the information into an encoded data regarding a designated bit-energy-to-noise-ratio; transmitting the encoded data to form a virtual antenna radiation pattern covering a designated region with boundary defined by the sharp cutoff based on the designated bit-energy-to-noise-ratio; receiving the encoded data; and decoding the encoded data into the original information only when receivers within the designated region with bit-energy-to-noise-ratio no less than the designated bit-energy-to-noise-ratio.
    Type: Application
    Filed: March 10, 2009
    Publication date: September 16, 2010
    Inventors: Chieh-Fu Chang, Wan-Hsin Hsieh, Ming-Seng Kao