Patents by Inventor Wan-min Huang

Wan-min Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240128219
    Abstract: A semiconductor die including mechanical-stress-resistant bump structures is provided. The semiconductor die includes dielectric material layers embedding metal interconnect structures, a connection pad-and-via structure, and a bump structure including a bump via portion and a bonding bump portion. The entirety of a bottom surface of the bump via portion is located within an area of a horizontal top surface of a pad portion of the connection pad-and-via structure.
    Type: Application
    Filed: December 6, 2023
    Publication date: April 18, 2024
    Inventors: Hui-Min Huang, Wei-Hung Lin, Kai Jun Zhan, Chang-Jung Hsueh, Wan-Yu Chiang, Ming-Da Cheng
  • Publication number: 20240088119
    Abstract: Provided are a package structure and a method of forming the same. The method includes providing a first package having a plurality of first dies and a plurality of second dies therein; performing a first sawing process to cut the first package into a plurality of second packages, wherein one of the plurality of second packages comprises three first dies and one second die; and performing a second sawing process to remove the second die of the one of the plurality of second packages, so that a cut second package is formed into a polygonal structure with the number of nodes greater than or equal to 5.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 14, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wei-Hung Lin, Hui-Min Huang, Chang-Jung Hsueh, Wan-Yu Chiang, Ming-Da Cheng, Mirng-Ji Lii
  • Patent number: 9425463
    Abstract: A method is provided for producing electrodes of flow cell having high power density. A plurality of seeds are distributed on a surface of a conductive carbon material. The seeds are etched into nanoparticles to form carbon nanotube (CNT) electrodes. The present invention can be applied to vanadium redox flow cell with advantages of the CNT electrodes, such as conductivity, corrosion resistance, mechanical strength and specific and electrochemical surface area. Electrons are directly passed to the material through CNTs and then to an external electronic load for improving power density of flow cell, making a cell pack more compact and reducing energy consumption on charging and discharging without using noble metal material.
    Type: Grant
    Filed: May 1, 2014
    Date of Patent: August 23, 2016
    Assignee: INSTITUTE OF NUCLEAR ENERGY RESEARCH, ATOMIC ENERGY COUNCIL, Executive Yuan, R.O.C.
    Inventors: Ning-Yih Hsu, Yuan-Ming Chang, Kuan-Hsiang Chen, Hwa-Jou Wei, Chen-Hao Wang, Wan-Min Huang
  • Patent number: 9259727
    Abstract: A gas-reforming catalyst is modified to obtain stability in high temperature. The catalyst uses ?-Al2O3 as a carrier and is nano-porous. Hence, reaction surface is greatly broadened; and platinum contained inside does not become bigger after times of use. The catalyst does not deposit carbon and has long life. The stability of the catalyst can be still remained even at a temperature higher than 800° C.
    Type: Grant
    Filed: October 23, 2012
    Date of Patent: February 16, 2016
    Assignee: Institute of Nuclear Energy Research, Atomic Energy Council, Executive Yuan, R.O.C.
    Inventors: Ning-Yih Hsu, King-Tsai Jeng, Shean-Du Chiou, Su-Hsine Lin, Hwa-Yuan Tzeng, Wan-Min Huang, Yuan-Ming Chang, Ruey-Yi Lee
  • Publication number: 20150114924
    Abstract: A method is provided for producing electrodes of flow cell having high power density. A plurality of seeds are distributed on a surface of a conductive carbon material. The seeds are etched into nanoparticles to form carbon nanotube (CNT) electrodes. The present invention can be applied to vanadium redox flow cell with advantages of the CNT electrodes, such as conductivity, corrosion resistance, mechanical strength and specific and electrochemical surface area. Electrons are directly passed to the material through CNTs and then to an external electronic load for improving power density of flow cell, making a cell pack more compact and reducing energy consumption on charging and discharging without using noble metal material.
    Type: Application
    Filed: May 1, 2014
    Publication date: April 30, 2015
    Applicant: Institute of Nuclear Energy Research, Atomic Energy Council, Executive Yuan R.O.C.
    Inventors: Ning-Yih Hsu, Yuan-Ming Chang, Kuan-Hsiang Chen, Hwa-Jou Wei, Chen-Hao Wang, Wan-Min Huang
  • Publication number: 20140113809
    Abstract: A gas-reforming catalyst is modified to obtain stability in high temperature. The catalyst uses ?-Al2O3 as a carrier and is nano-porous. Hence, reaction surface is greatly broadened; and platinum contained inside does not become bigger after times of use. The catalyst does not deposit carbon and has long life. The stability of the catalyst can be still remained even at a temperature higher than 800° C.
    Type: Application
    Filed: October 23, 2012
    Publication date: April 24, 2014
    Applicant: Atomic Energy Council-Institute of Nuclear Research
    Inventors: Ning-Yih Hsu, King-Tsai Jeng, Shean-Du Chiou, Su-Hsine Lin, Hwa-Yuan Tzeng, Wan-Min Huang, Yuan-Ming Chang, Ruey-Yi Lee
  • Patent number: 8273230
    Abstract: A cathode electrophoretic deposition (EPD) suspension is provided by mixing an ionomer solution with an electrolyte. An anode EPD suspension is provided via mixing carbon nanomaterial (CNM)-supported catalyst with a solution of the same composition as that of the cathode EPD suspension. Ultrasonication and high-speed stirring are executed on the cathode and anode EPD suspensions, thus turning them into homogenous suspensions. There is provided a low-voltage EPD apparatus incorporated with a porous material to separate it into anode and cathode compartments. The anode and cathode EPD suspensions are filled in the anode and cathode compartments, respectively. An inert gas is introduced into the anode compartment for stirring the anode EPD suspension. An electrode base substrate is used as the anode of the EPD apparatus. A low-voltage direct current (DC) power supply is used to supply DC low voltage to the EPD apparatus, thus evenly coating a catalyst layer on the substrate.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: September 25, 2012
    Assignee: Atomic Energy Council—Institute of Nuclear Research
    Inventors: King-Tsai Jeng, Wan-Min Huang
  • Patent number: 8128894
    Abstract: The present disclosure provides a gas reaction device. Reactions are happened on a fixed bed and/or a slurry bed in four reaction states. Thus, by using the four reaction states, reactions are thoroughly completed with the same catalyst. Or, different reactions are completed with different catalysts for different purposes.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: March 6, 2012
    Assignee: Atomic Energy Council
    Inventors: Chun-Ching Chien, Shean-Du Chiou, Su-Hsine Lin, Wan-Min Huang, Ning-Yih Hsu
  • Publication number: 20110104011
    Abstract: The present disclosure provides a gas reaction device. Reactions are happened on a fixed bed and/or a slurry bed in four reaction states. Thus, by using the four reaction states, reactions are thoroughly completed with the same catalyst. Or, different reactions are completed with different catalysts for different purposes.
    Type: Application
    Filed: March 15, 2010
    Publication date: May 5, 2011
    Applicant: ATOMIC ENERGY COUNCIL-INSTITUTE OF NUCLEAR ENERGY RESEARCH
    Inventors: Chun-Ching Chien, Shean-Du Chiou, Su-Hsine Lin, Wan-Min Huang, Ning-Yih Hsu
  • Publication number: 20110105306
    Abstract: A Cu—Zn—Al catalyst is fabricated for producing methanol and dimethyl ether (DME). A sol-gel method is used to obtain an organic phase with gel clusters rapidly transferred in. The catalyst thus fabricated can be adjusted in crystal grain size, crystal type, surface structure and active sites distribution. Thus, performance of the catalyst is improved.
    Type: Application
    Filed: June 9, 2010
    Publication date: May 5, 2011
    Applicant: ATOMIC ENERGY COUNCIL-INSTITUTE OF NUCLEAR ENERGY RESEARCH
    Inventors: Chun-Ching Chien, Ning-Yih Hsu, Shean-Du Chiou, Su-Hsine Lin, Wan-Min Huang
  • Publication number: 20110024294
    Abstract: A cathode electrophoretic deposition (EPD) suspension is provided by mixing an ionomer solution with an electrolyte. An anode EPD suspension is provided via mixing carbon nanomaterial (CNM)-supported catalyst with a solution of the same composition as that of the cathode EPD suspension. Ultrasonication and high-speed stirring are executed on the cathode and anode EPD suspensions, thus turning them into homogenous suspensions. There is provided a low-voltage EPD apparatus incorporated with a porous material to separate it into anode and cathode compartments. The anode and cathode EPD suspensions are filled in the anode and cathode compartments, respectively. An inert gas is introduced into the anode compartment for stirring the anode EPD suspension. An electrode base substrate is used as the anode of the EPD apparatus. A low-voltage direct current (DC) power supply is used to supply DC low voltage to the EPD apparatus, thus evenly coating a catalyst layer on the substrate.
    Type: Application
    Filed: February 15, 2008
    Publication date: February 3, 2011
    Applicant: ATOMIC ENERGY COUNCIL - INSTITUTE OF NUCLEAR ENERGY RESEARCH
    Inventors: King-Tsai Jeng, Wan-Min Huang
  • Patent number: 7763374
    Abstract: Fuel cell electrodes are fabricated on electrode base substrates. The electrode substrates can be evenly and uniformly covered with electrocatalysts, which are supported on carbon nanomaterials, and ionomers by means of filtration and pressing. The electrodes can be used as anodes or cathodes for membrane fuel cells, such as DMFC and PEMFC.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: July 27, 2010
    Assignee: Atomic Energy Council
    Inventors: Su-hsine Lin, Shean-du Chiou, Wan-min Huang, King-tsai Jeng, Chun-ching Chien
  • Publication number: 20080115875
    Abstract: Fuel cell electrodes are fabricated on electrode base substrates. The electrode substrates can be evenly and uniformly covered with electrocatalysts, which are supported on carbon nanomaterials, and ionomers by means of filtration and pressing. The electrodes can be used as anodes or cathodes for membrane fuel cells, such as DMFC and PEMFC.
    Type: Application
    Filed: November 22, 2006
    Publication date: May 22, 2008
    Applicant: ATOMIC ENERGY COUNCIL-INSTITUTE OF NUCLEAR ENERGY RESEARCH
    Inventors: King-tsai Jeng, Chun-ching Chien, Wan-min Huang, Su-hsine Lin, Shean-du Chiou
  • Publication number: 20070161501
    Abstract: In the present invention, platinum and alloying metal precursor ions are reduced to platinum alloy particles using specifically prepared reducing agents, under controlled reaction temperature and pH conditions, with uniform dispersion and high uniformity in nano-scale sizes adhered onto carbon nanotubes; besides, the compositions of prepared Pt alloy electrocatalysts can be put under control as desired.
    Type: Application
    Filed: January 10, 2006
    Publication date: July 12, 2007
    Inventors: Chun-Ching Chien, King-Tsai Jeng, Shean-Du Chiou, Su-Hsine Lin, Wan-Min Huang, Ning-Yih Hsu