Patents by Inventor Wan-Ting SHIH

Wan-Ting SHIH has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11532577
    Abstract: An embodiment is a method including depositing a first dielectric layer over a molding compound and a chip and patterning a first opening in the first dielectric layer to expose a contact of the chip. A first metallization layer is deposited over the first dielectric layer and in the first opening, where a portion of the first metallization layer in the first opening has a flat top. A second dielectric layer is deposited over the first metallization layer and the first dielectric layer. A second metallization layer is deposited in a second opening in the second dielectric layer, where the second metallization layer does not have a flat top within the second opening.
    Type: Grant
    Filed: August 10, 2020
    Date of Patent: December 20, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wan-Ting Shih, Nai-Wei Liu, Jing-Cheng Lin, Cheng-Lin Huang
  • Patent number: 10911113
    Abstract: A communication system and a codec method based on deep learning and known channel state information (CSI) are provided. The communication system includes: a first electronic apparatus including a known first link CSI and a CSI encoder having a deep learning function; and a second electronic apparatus including a known second link CSI and a CSI decoder having a deep learning function. The first and second link CSIs have a correlation or a similarity. The CSI encoder of the first electronic apparatus encodes or compresses the first link CSI into the first codeword, and feeds the first codeword back to the second electronic apparatus via a feedback link. The CSI decoder of the second electronic apparatus encodes or compresses the second link CSI into a second codeword, and decodes or restores the first link CSI of the first electronic apparatus based on the first codeword and the second codeword.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: February 2, 2021
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chao-Kai Wen, Wan-Ting Shih, Ren-Jr Chen
  • Patent number: 10867897
    Abstract: A method of forming a PoP device comprises placing an adhesive layer on a carrier substrate, coupling a plurality of chip packages to the adhesive layer on the carrier substrate, placing a bonding layer on the chip packages, and coupling a plurality of chips to the bonding layer on the chip packages. The method further comprises injecting a molding compound to encapsulate the chip packages and the chips on the carrier substrate, grinding the molding compound to expose a plurality of connecting elements of the chips and a plurality of second connecting elements of the chip packages, forming a redistribution layer (RDL) on the molding compound and the exposed connecting elements and second connecting elements, forming a ball grid array (BGA) on the RDL, and de-bonding the carrier substrate.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: December 15, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chin-Chuan Chang, Jing-Cheng Lin, Nai-Wei Liu, Wan-Ting Shih
  • Publication number: 20200373264
    Abstract: An embodiment is a method including depositing a first dielectric layer over a molding compound and a chip and patterning a first opening in the first dielectric layer to expose a contact of the chip. A first metallization layer is deposited over the first dielectric layer and in the first opening, where a portion of the first metallization layer in the first opening has a flat top. A second dielectric layer is deposited over the first metallization layer and the first dielectric layer. A second metallization layer is deposited in a second opening in the second dielectric layer, where the second metallization layer does not have a flat top within the second opening.
    Type: Application
    Filed: August 10, 2020
    Publication date: November 26, 2020
    Inventors: Wan-Ting Shih, Nai-Wei Liu, Jing-Cheng Lin, Cheng-Lin Huang
  • Patent number: 10771143
    Abstract: A switching method for multiple antenna arrays is disclosed which including: turning on a number of antenna arrays of an electronic device, and obtaining multiple received powers of a beam signal; turning off the antenna array(s) other than the antenna array having the largest received power, and calculating multiple first power ratio parameters according to the received powers; calculating a first channel information of the antenna array which is turned on; calculating a first virtual channel information of each of the antenna arrays which are turned off according to the first channel information, the first power ratio parameter corresponding to each of the antenna arrays which are turned off and an angle mapping table; and selecting one of the antenna arrays to turn on according to the first channel information and all the first virtual channel information, and turning off the rest antenna array(s).
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: September 8, 2020
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chao-Kai Wen, Zi-Hui Shen, Wan-Ting Shih
  • Patent number: 10741511
    Abstract: An embodiment is a method including depositing a first dielectric layer over a molding compound and a chip and patterning a first opening in the first dielectric layer to expose a contact of the chip. A first metallization layer is deposited over the first dielectric layer and in the first opening, where a portion of the first metallization layer in the first opening has a flat top. A second dielectric layer is deposited over the first metallization layer and the first dielectric layer. A second metallization layer is deposited in a second opening in the second dielectric layer, where the second metallization layer does not have a flat top within the second opening.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: August 11, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Wan-Ting Shih, Nai-Wei Liu, Jing-Cheng Lin, Cheng-Lin Huang
  • Publication number: 20200220593
    Abstract: A communication system and a codec method based on deep learning and known channel state information (CSI) are provided. The communication system includes: a first electronic apparatus including a known first link CSI and a CSI encoder having a deep learning function; and a second electronic apparatus including a known second link CSI and a CSI decoder having a deep learning function. The first and second link CSIs have a correlation or a similarity. The CSI encoder of the first electronic apparatus encodes or compresses the first link CSI into the first codeword, and feeds the first codeword back to the second electronic apparatus via a feedback link. The CSI decoder of the second electronic apparatus encodes or compresses the second link CSI into a second codeword, and decodes or restores the first link CSI of the first electronic apparatus based on the first codeword and the second codeword.
    Type: Application
    Filed: March 15, 2019
    Publication date: July 9, 2020
    Inventors: Chao-Kai Wen, Wan-Ting Shih, Ren-Jr Chen
  • Publication number: 20190355684
    Abstract: An embodiment is a method including depositing a first dielectric layer over a molding compound and a chip and patterning a first opening in the first dielectric layer to expose a contact of the chip. A first metallization layer is deposited over the first dielectric layer and in the first opening, where a portion of the first metallization layer in the first opening has a flat top. A second dielectric layer is deposited over the first metallization layer and the first dielectric layer. A second metallization layer is deposited in a second opening in the second dielectric layer, where the second metallization layer does not have a flat top within the second opening.
    Type: Application
    Filed: July 29, 2019
    Publication date: November 21, 2019
    Inventors: Wan-Ting Shih, Nai-Wei Liu, Jing-Cheng Lin, Cheng-Lin Huang
  • Patent number: 10366960
    Abstract: An embodiment is a structure including a molding compound laterally encapsulating a chip with a contact pad. A first dielectric layer is formed overlying the molding compound. A first metallization layer is formed overlying the first dielectric layer, in which the first metallization layer extends through the first dielectric layer to contact the contact pad. A second dielectric layer is formed overlying the first metallization layer and the first dielectric layer. A second metallization layer is formed overlying the second dielectric layer and extends through the second dielectric layer to contact the first metallization layer.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: July 30, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Wan-Ting Shih, Nai-Wei Liu, Jing-Cheng Lin, Cheng-Lin Huang
  • Publication number: 20180233441
    Abstract: A method of forming a PoP device comprises placing an adhesive layer on a carrier substrate, coupling a plurality of chip packages to the adhesive layer on the carrier substrate, placing a bonding layer on the chip packages, and coupling a plurality of chips to the bonding layer on the chip packages. The method further comprises injecting a molding compound to encapsulate the chip packages and the chips on the carrier substrate, grinding the molding compound to expose a plurality of connecting elements of the chips and a plurality of second connecting elements of the chip packages, forming a redistribution layer (RDL) on the molding compound and the exposed connecting elements and second connecting elements, forming a ball grid array (BGA) on the RDL, and de-bonding the carrier substrate.
    Type: Application
    Filed: April 13, 2018
    Publication date: August 16, 2018
    Inventors: Chin-Chuan Chang, Jing-Cheng Lin, Nai-Wei Liu, Wan-Ting Shih
  • Patent number: 9953907
    Abstract: A method of forming a PoP device comprises placing an adhesive layer on a carrier substrate, coupling a plurality of chip packages to the adhesive layer on the carrier substrate, placing a bonding layer on the chip packages, and coupling a plurality of chips to the bonding layer on the chip packages. The method further comprises injecting a molding compound to encapsulate the chip packages and the chips on the carrier substrate, grinding the molding compound to expose a plurality of connecting elements of the chips and a plurality of second connecting elements of the chip packages, forming a redistribution layer (RDL) on the molding compound and the exposed connecting elements and second connecting elements, forming a ball grid array (BGA) on the RDL, and de-bonding the carrier substrate.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: April 24, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chin-Chuan Chang, Jing-Cheng Lin, Nai-Wei Liu, Wan-Ting Shih
  • Publication number: 20180033747
    Abstract: An embodiment is a structure including a molding compound laterally encapsulating a chip with a contact pad. A first dielectric layer is formed overlying the molding compound. A first metallization layer is formed overlying the first dielectric layer, in which the first metallization layer extends through the first dielectric layer to contact the contact pad. A second dielectric layer is formed overlying the first metallization layer and the first dielectric layer. A second metallization layer is formed overlying the second dielectric layer and extends through the second dielectric layer to contact the first metallization layer.
    Type: Application
    Filed: October 6, 2017
    Publication date: February 1, 2018
    Inventors: Wan-Ting Shih, Nai-Wei Liu, Jing-Cheng Lin, Cheng-Lin Huang
  • Patent number: 9824989
    Abstract: An embodiment is a package including a molding compound laterally encapsulating a chip with a contact pad. A first dielectric layer is formed overlying the molding compound and the chip and has a first opening exposing the contact pad. A first metallization layer is formed overlying the first dielectric layer, in which the first metallization layer fills the first opening. A second dielectric layer is formed overlying the first metallization layer and the first dielectric layer and has a second opening over the first opening. A second metallization layer is formed overlying the second dielectric layer and formed in the second opening.
    Type: Grant
    Filed: July 2, 2014
    Date of Patent: November 21, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wan-Ting Shih, Nai-Wei Liu, Jing-Cheng Lin, Cheng-Lin Huang
  • Patent number: 9312148
    Abstract: A method of packaging a semiconductor device includes forming an insulating layer over a semiconductor device, wherein the semiconductor device has a contact pad, and a thickness of the contact pad is greater than a thickness of the insulating layer. The method further includes forming a molding compound to cover the semiconductor device and a space between the semiconductor device and a neighboring semiconductor device, wherein both semiconductor devices are on a carrier wafer. The method further includes planarizing a surface of the semiconductor device by removing the molding compound and the insulating layer over the contact pad.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: April 12, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jing-Cheng Lin, Jui-Pin Hung, Nai-Wei Liu, Yi-Chao Mao, Wan-Ting Shih, Tsan-Hua Tung
  • Publication number: 20160005702
    Abstract: An embodiment is a package including a molding compound laterally encapsulating a chip with a contact pad. A first dielectric layer is formed overlying the molding compound and the chip and has a first opening exposing the contact pad. A first metallization layer is formed overlying the first dielectric layer, in which the first metallization layer fills the first opening. A second dielectric layer is formed overlying the first metallization layer and the first dielectric layer and has a second opening over the first opening. A second metallization layer is formed overlying the second dielectric layer and formed in the second opening.
    Type: Application
    Filed: July 2, 2014
    Publication date: January 7, 2016
    Inventors: Wan-Ting Shih, Nai-Wei Liu, Jing-Cheng Lin, Cheng-Lin Huang
  • Publication number: 20150187605
    Abstract: A method of packaging a semiconductor device includes forming an insulating layer over a semiconductor device, wherein the semiconductor device has a contact pad, and a thickness of the contact pad is greater than a thickness of the insulating layer. The method further includes forming a molding compound to cover the semiconductor device and a space between the semiconductor device and a neighboring semiconductor device, wherein both semiconductor devices are on a carrier wafer. The method further includes planarizing a surface of the semiconductor device by removing the molding compound and the insulating layer over the contact pad.
    Type: Application
    Filed: March 16, 2015
    Publication date: July 2, 2015
    Inventors: Jing-Cheng LIN, Jui-Pin HUNG, Nai-Wei LIU, Yi-Chao MAO, Wan-Ting SHIH, Tsan-Hua TUNG
  • Patent number: 9000584
    Abstract: The mechanisms of forming a molding compound on a semiconductor device substrate to enable fan-out structures in wafer-level packaging (WLP) are provided. The mechanisms involve covering portions of surfaces of an insulating layer surrounding a contact pad. The mechanisms improve reliability of the package and process control of the packaging process. The mechanisms also reduce the risk of interfacial delamination, and excessive outgassing of the insulating layer during subsequent processing. The mechanisms further improve planarization end-point. By utilizing a protective layer between the contact pad and the insulating layer, copper out-diffusion can be reduced and the adhesion between the contact pad and the insulating layer may also be improved.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: April 7, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jing-Cheng Lin, Jui-Pin Hung, Nai-Wei Liu, Yi-Chao Mao, Wan-Ting Shih, Tsan-Hua Tung
  • Publication number: 20140210080
    Abstract: A method of forming a PoP device comprises placing an adhesive layer on a carrier substrate, coupling a plurality of chip packages to the adhesive layer on the carrier substrate, placing a bonding layer on the chip packages, and coupling a plurality of chips to the bonding layer on the chip packages. The method further comprises injecting a molding compound to encapsulate the chip packages and the chips on the carrier substrate, grinding the molding compound to expose a plurality of connecting elements of the chips and a plurality of second connecting elements of the chip packages, forming a redistribution layer (RDL) on the molding compound and the exposed connecting elements and second connecting elements, forming a ball grid array (BGA) on the RDL, and de-bonding the carrier substrate.
    Type: Application
    Filed: January 29, 2013
    Publication date: July 31, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chin-Chuan Chang, Jing-Cheng Lin, Nai-Wei Liu, Wan-Ting Shih
  • Publication number: 20130168848
    Abstract: The mechanisms of forming a molding compound on a semiconductor device substrate to enable fan-out structures in wafer-level packaging (WLP) are provided. The mechanisms involve covering portions of surfaces of an insulating layer surrounding a contact pad. The mechanisms improve reliability of the package and process control of the packaging process. The mechanisms also reduce the risk of interfacial delamination, and excessive outgassing of the insulating layer during subsequent processing. The mechanisms further improve planarization end-point. By utilizing a protective layer between the contact pad and the insulating layer, copper out-diffusion can be reduced and the adhesion between the contact pad and the insulating layer may also be improved.
    Type: Application
    Filed: December 28, 2011
    Publication date: July 4, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jing-Cheng LIN, Jui-Pin HUNG, Nai-Wei LIU, Yi-Chao MAO, Wan-Ting SHIH, Tsan-Hua TUNG