Patents by Inventor Wang-kyung Sung

Wang-kyung Sung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10825982
    Abstract: A piezoelectric Micro-Electro-Mechanical Systems (MEMS) device comprising: a physical element; and a piezoelectric sensor element, with the physical element positioned in proximity to a moving portion of the piezoelectric sensor element, and with proximity of the physical element to the moving portion reducing a probability of breakage of the piezoelectric sensor element by limiting an excursion of the piezoelectric sensor element, relative to a probability of breakage of the piezoelectric sensor element in another piezoelectric MEMS device without the physical element.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: November 3, 2020
    Assignee: Vesper Technologies Inc.
    Inventors: Robert J. Littrell, Karl Grosh, Craig Core, Yu Hui, Wang Kyung Sung
  • Patent number: 9970764
    Abstract: A Coriolis-based bulk acoustic wave gyroscope includes a center-supported resonating element with capacitively-coupled drive, sense, and control electrodes. The resonating element has a first substantially solid or perforated region which is connected to the center-support by a second region characterized by a plurality of spokes or beams. When operating in a resonance state, the first region undergoes a bulk acoustic mode of vibration while the second region undergoes a flexural mode of vibration. Energy losses associated with the flexural mode of vibration reduce the overall quality factor (Q) at high resonance frequencies creating a large bandwidth and a fast response time without needing vacuum.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: May 15, 2018
    Assignee: Georgia Tech Research Corporation
    Inventors: Farrokh Ayazi, Wang-kyung Sung, Mohammad Faisal Zaman
  • Patent number: 9915532
    Abstract: A gyroscope having a resonant body utilizes a self-calibration mechanism that does not require physical rotation of the resonant body. Instead, interface circuitry applies a rotating electrostatic field to first and second drive electrodes simultaneously to excite both the drive and sense resonance modes of the gyroscope. When drive electrodes associated with both the drive and sense resonance modes of the gyroscope are excited by forces of equal amplitude but 90° phase difference, respectively, the phase shift in the gyroscope response, as measured by the current output of the sense electrodes for each resonance mode, is proportional to an equivalent gyroscope rotation rate.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: March 13, 2018
    Inventors: Giorgio Casinovi, Farrokh Ayazi, Wang Kyung Sung, Milap Jayesh Dalal, Arashk Norouz Pour Shirazi
  • Patent number: 9726489
    Abstract: A single proof-mass, dual-axis gyroscope apparatus comprises a resonating body member and first and second electrodes each capacitively coupled to the resonating body member by a respective lateral capacitive air gap and a vertical capacitive air gap. The width of one of the lateral capacitive air gap of the first electrode is substantially smaller than the vertical capacitive air gap. The width of one of the vertical capacitive air gap of the second electrode is substantially smaller than the lateral capacitive air gap. The apparatus claimed can address the process variation such as vertical and lateral dimension variation by electrostatic tuning method.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: August 8, 2017
    Assignee: Georgia Tech Research Corporation
    Inventors: Farrokh Ayazi, Wang-kyung Sung, Mohammad Zaman
  • Publication number: 20160370183
    Abstract: A gyroscope having a resonant body utilizes a self-calibration mechanism that does not require physical rotation of the resonant body. Instead, interface circuitry applies a rotating electrostatic field to first and second drive electrodes simultaneously to excite both the drive and sense resonance modes of the gyroscope. When drive electrodes associated with both the drive and sense resonance modes of the gyroscope are excited by forces of equal amplitude but 90° phase difference, respectively, the phase shift in the gyroscope response, as measured by the current output of the sense electrodes for each resonance mode, is proportional to an equivalent gyroscope rotation rate.
    Type: Application
    Filed: May 20, 2016
    Publication date: December 22, 2016
    Inventors: Giorgio Casinovi, Farrokh Ayazi, Wang Kyung Sung, Milap Jayesh Dalal, Arashk Norouz Pour Shirazi
  • Publication number: 20160327390
    Abstract: A resonant gyroscope apparatus has a decoupling mechanism implemented with spring-like flexure members to effectively isolate an axis-symmetric bulk-acoustic wave (BAW) vibratory gyroscope from its substrate, thereby minimizing the effect that external sources of error have on offset and scale-factor. The spring-like structure enables degeneracy of in-plane resonance modes of the annulus and aids in decoupling the in-plane and out-of-plane resonance modes of the resonant annulus, thereby enabling the mode-matched and/or near mode-matched operation of the structure as a vibratory gyroscope in the pitch, roll and yaw-modes.
    Type: Application
    Filed: January 13, 2015
    Publication date: November 10, 2016
    Inventors: Diego E. Serrano, Mohammad F. Zaman, Farrokh Ayazi, Amir Rahafrooz, Wang-Kyung Sung, Ijaz Jafri
  • Patent number: 9347775
    Abstract: A gyroscope having a resonant body utilizes a self-calibration mechanism that does not require physical rotation of the resonant body. Instead, interface circuitry applies a rotating electrostatic field to first and second drive electrodes simultaneously to excite both the drive and sense resonance modes of the gyroscope. When drive electrodes associated with both the drive and sense resonance modes of the gyroscope are excited by forces of equal amplitude but 90° phase difference, respectively, the phase shift in the gyroscope response, as measured by the current output of the sense electrodes for each resonance mode, is proportional to an equivalent gyroscope rotation rate.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: May 24, 2016
    Assignee: Georgia Tech Research Corporation
    Inventors: Giorgio Casinovi, Farrokh Ayazi, Wang Kyung Sung, Milap Jayesh Dalal, Arashk Norouz Pour Shirazi
  • Patent number: 8763441
    Abstract: A gyroscope having a resonant body utilizes a self-calibration mechanism that does not require physical rotation of the resonant body. Instead, interface circuitry applies a rotating electrostatic field to first and second drive electrodes simultaneously to excite both the drive and sense resonance modes of the gyroscope. When drive electrodes associated with both the drive and sense resonance modes of the gyroscope are excited by forces of equal amplitude but 90° phase difference, respectively, the phase shift in the gyroscope response, as measured by the current output of the sense electrodes for each resonance mode, is proportional to an equivalent gyroscope rotation rate.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: July 1, 2014
    Assignee: Georgia Tech Research Corporation
    Inventors: Giorgio Casinovi, Farrokh Ayazi, Wang-Kyung Sung, Milap Jayesh Dalal, Arashk Norouz Pour Shirazi
  • Publication number: 20140157896
    Abstract: A gyroscope having a resonant body utilizes a self-calibration mechanism that does not require physical rotation of the resonant body. Instead, interface circuitry applies a rotating electrostatic field to first and second drive electrodes simultaneously to excite both the drive and sense resonance modes of the gyroscope. When drive electrodes associated with both the drive and sense resonance modes of the gyroscope are excited by forces of equal amplitude but 90° phase difference, respectively, the phase shift in the gyroscope response, as measured by the current output of the sense electrodes for each resonance mode, is proportional to an equivalent gyroscope rotation rate.
    Type: Application
    Filed: February 14, 2014
    Publication date: June 12, 2014
    Inventors: Giorgio Casinovi, Farrokh Ayazi, Wang Kyung Sung, Milap Jayesh Dalal, Arashk Norouz Pour Shirazi
  • Publication number: 20130283911
    Abstract: A single proof-mass, dual-axis gyroscope apparatus comprises a resonating body member and first and second electrodes each capacitively coupled to the resonating body member by a respective lateral capacitive air gap and a vertical capacitive air gap. The width of one of the lateral capacitive air gap of the first electrode is substantially smaller than the vertical capacitive air gap. The width of one of the vertical capacitive air gap of the second electrode is substantially smaller than the lateral capacitive air gap. The apparatus claimed can address the process variation such as vertical and lateral dimension variation by electrostatic tuning method.
    Type: Application
    Filed: December 5, 2011
    Publication date: October 31, 2013
    Inventors: Farrokh Ayazi, Wang-kyung Sung, Mohammad Zaman
  • Publication number: 20130125614
    Abstract: A gyroscope having a resonant body utilizes a self-calibration mechanism that does not require physical rotation of the resonant body. Instead, interface circuitry applies a rotating electrostatic field to first and second drive electrodes simultaneously to excite both the drive and sense resonance modes of the gyroscope. When drive electrodes associated with both the drive and sense resonance modes of the gyroscope are excited by forces of equal amplitude but 90° phase difference, respectively, the phase shift in the gyroscope response, as measured by the current output of the sense electrodes for each resonance mode, is proportional to an equivalent gyroscope rotation rate.
    Type: Application
    Filed: April 11, 2012
    Publication date: May 23, 2013
    Inventors: Giorgio Casinovi, Farrokh Ayazi, Wang Kyung Sung, Milap Jayesh Dalal, Arashk Norouz Pour Shirazi
  • Publication number: 20120227487
    Abstract: A Coriolis-based bulk acoustic wave gyroscope includes a center-supported resonating element with capacitively-coupled drive, sense, and control electrodes. The resonating element has a first substantially solid or perforated region which is connected to the center-support by a second region characterized by a plurality of spokes or beams. When operating in a resonance state, the first region undergoes a bulk acoustic mode of vibration while the second region undergoes a flexural mode of vibration. Energy losses associated with the flexural mode of vibration reduce the overall quality factor (Q) at high resonance frequencies creating a large bandwidth and a fast response time without needing vacuum.
    Type: Application
    Filed: August 31, 2010
    Publication date: September 13, 2012
    Inventors: Farrokh Ayazi, Wang-kyung Sung, Mohammad Faisal Zaman