Patents by Inventor Wang Tang

Wang Tang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240156896
    Abstract: The present invention provides polypeptide modulators of complement activity, including cyclic polypeptide modulators. Also provided are methods of utilizing such modulators as therapeutics.
    Type: Application
    Filed: June 1, 2023
    Publication date: May 16, 2024
    Inventors: Michelle Denise Hoarty, Ketki Ashok Dhamnaskar, Daniel Elbaum, Kristopher Josephson, Kelley Cronin Larson, Zhong Ma, Nathan Ezekiel Nims, Alonso Ricardo, Kathleen Seyb, Guo-Qing Tang, Douglas A. Treco, Zhaolin Wang, Ping Ye, Hong Zheng, Sarah Jacqueline Perlmutter
  • Publication number: 20240141767
    Abstract: A method of improving a field operation that comprises a gas injection may include assessing a plurality of potential injection gases against a plurality of values of a plurality of parameters associated with a plurality of samples, where each of the plurality of potential injection gases comprises an acidic component, and where the plurality of parameters comprises fluid chemistry parameters and rock properties. The method may also include determining a proposed injection gas from among the plurality of potential injection gases for the field operation that comprises the gas injection to be performed using a first wellbore in fluidic communication with a first subterranean formation, a second wellbore in fluidic communication with the first subterranean formation, a third wellbore in fluidic communication with a second subterranean formation, or any combination thereof.
    Type: Application
    Filed: October 31, 2023
    Publication date: May 2, 2024
    Inventors: Wei Wang, Wei Wei, Johannes Orlando Alvarez Ortiz, Guo-Qing Tang, Hao Sun, Dengen Zhou, Kelly Marie Krezinski, Chao Yan, Christopher Adam Griffith, Jon Edward Burger
  • Patent number: 11964989
    Abstract: Compounds that inhibit KRas G12D. In particular, compounds that inhibit the activity of KRas G12D, pharmaceutical compositions comprising the compounds and methods of use therefor, and in particular, methods of treating cancer. The compounds have a general structure represented by Formula (I): or a pharmaceutically acceptable salt thereof.
    Type: Grant
    Filed: July 20, 2022
    Date of Patent: April 23, 2024
    Assignees: Mirati Therapeutics, Inc., Array BioPharma Inc.
    Inventors: Xiaolun Wang, Aaron Craig Burns, James Gail Christensen, John Michael Ketcham, John David Lawson, Matthew Arnold Marx, Christopher Ronald Smith, Shelley Allen, James F. Blake, Mark Joseph Chicarelli, Joshua Ryan Dahlke, Donghua Dai, Jay Bradford Fell, John Peter Fischer, Macedonio J. Mejia, Brad Newhouse, Phong Nguyen, Jacob Matthew O'Leary, Spencer Pajk, Martha E. Rodriguez, Pavel Savechenkov, Tony P. Tang, Guy P.A. Vigers, Qian Zhao, Dean Russell Kahn, John Gaudino, Michael Christopher Hilton
  • Patent number: 11965040
    Abstract: The present invention provides modulators of complement activity. Also provided are methods of utilizing such modulators as therapeutics.
    Type: Grant
    Filed: April 21, 2021
    Date of Patent: April 23, 2024
    Assignee: RA PHARMACEUTICALS, INC.
    Inventors: Michelle Denise Hoarty, Ketki Ashok Dhamnaskar, Daniel Elbaum, Kristopher Josephson, Kelley Cronin Larson, Zhong Ma, Nathan Ezekiel Nims, Alonso Ricardo, Kathleen Seyb, Guo-Qing Tang, Douglas A. Treco, Zhaolin Wang, Ping Ye, Hong Zheng, Sarah Jacqueline Perlmutter, Robert Paul Hammer
  • Publication number: 20240111588
    Abstract: Intelligent process management is provided. A start time is determined for an additional process to be run on a worker node within a duration of a sleep state of a task of a process already running on the worker node by adding a first defined buffer time to a determined start time of the sleep state of the task. A backfill time is determined for the additional process by subtracting a second defined buffer time from a determined end time of the sleep state of the task. A scheduling plan is generated for the additional process based on the start time and the backfill time corresponding to the additional process. The scheduling plan is executed to run the additional process on the worker node according to the start time and the backfill time corresponding to the additional process.
    Type: Application
    Filed: September 29, 2022
    Publication date: April 4, 2024
    Inventors: Jing Jing Wei, Yue Wang, Shu Jun Tang, Yang Kang, Yi Fan Wu, Qi Han Zheng, Jia Lin Wang
  • Publication number: 20240086730
    Abstract: At least one processor identifies dependency relationships among libraries in a repository of libraries. Using the dependency relationships among libraries, at least one machine learning model can be created that predicts with a confidence value a dependency between a given library and a target library. An L layer tree-like graph can be created, using the dependency relationships among libraries and an application package. L can be configurable. Versions of the libraries to use can be determined by running the at least one machine learning model for each pair of nodes having a dependency relationship in the L layer tree-like graph, the at least one machine learning model identifying the dependency relationship with a confidence value, where pairs of nodes having largest confidence values are selected as the versions of the libraries to use in the application package.
    Type: Application
    Filed: September 13, 2022
    Publication date: March 14, 2024
    Inventors: Jin Wang, Lei Gao, A Peng Zhang, Kai Li, Xin Feng Zhu, Geng Wu Yang, Jia Xing Tang, Yan Liu
  • Patent number: 11125068
    Abstract: The present invention relates to a channel fracturing method with alternative injection of conventional and capsule-type soluble proppants. The method includes the following steps: injecting pad fluid into a wellbore to break a formation and form fractures in the formation; alternately injecting a sand-carrying fluid containing conventional proppant and a sand-carrying fluid containing capsule-type soluble proppant into the wellbore in sequence to support fractures in the formation and continue to fracture the formation; injecting displacement fluid into the wellbore to completely displace the sand-carrying fluids in the wellbore into the fractures. The conventional proppant of less dosage is used. The capsule-type soluble proppant is less difficult to be developed and its solubility is sensitive to the fracture closure, which is conducive to the quick flowback after fracturing.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: September 21, 2021
    Assignee: SOUTHWEST PETROLEUM UNIVERSITY
    Inventors: Youshi Jiang, Yan Kou, Yongming Li, Zhibin He, Jing Jia, Wang Tang, Ang Luo, Bo Chen
  • Publication number: 20210222537
    Abstract: The present invention relates to a channel fracturing method with alternative injection of conventional and capsule-type soluble proppants. The method includes the following steps: injecting pad fluid into a wellbore to break a formation and form fractures in the formation; alternately injecting a sand-carrying fluid containing conventional proppant and a sand-carrying fluid containing capsule-type soluble proppant into the wellbore in sequence to support fractures in the formation and continue to fracture the formation; injecting displacement fluid into the wellbore to completely displace the sand-carrying fluids in the wellbore into the fractures. The conventional proppant of less dosage is used. The capsule-type soluble proppant is less difficult to be developed and its solubility is sensitive to the fracture closure, which is conducive to the quick flowback after fracturing.
    Type: Application
    Filed: April 9, 2021
    Publication date: July 22, 2021
    Applicant: SOUTHWEST PETROLEUM UNIVERSITY
    Inventors: Youshi Jiang, Yan Kou, Yongming Li, Zhibin He, Jing Jia, Wang Tang, Ang Luo, Bo Chen
  • Patent number: 5933110
    Abstract: A portable attitude determination apparatus and method are disclosed that can be used with a ship docking system. At least two receivers on a vessel receive Global Positioning System (GPS) satellite data. GPS carrier phase measurements are used to determine attitude (i.e., roll, pitch and yaw angles) of a moving platform. The phase measurements are processed to determine a precise vector from one receiver phase center to the other. The azimuth and elevation of a baseline vector is then computed. Float ambiguities between the two receivers are determined, and are used to provide initial estimates of antenna baseline length and attitude. A search procedure is then employed to find the actual integer ambiguities. Only GPS observables are needed; no other external data input is required.
    Type: Grant
    Filed: July 13, 1998
    Date of Patent: August 3, 1999
    Assignee: Arinc, Inc.
    Inventors: Wang Tang, Donald W. English, Eugene B. Howell