Patents by Inventor Wangen Lin

Wangen Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9694440
    Abstract: An example method of attaching an airfoil for an integrally bladed rotor includes placing a support collar in an installed position around at least a leading edge and trailing edge of an airfoil stub to be repaired in an integrally bladed rotor. The support collar and the airfoil stub together have a midline that is positioned between opposing, laterally outer surfaces of the airfoil stub when the support collar is in the installed position. The method performs linear friction welding to add a replacement airfoil to the airfoil stub.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: July 4, 2017
    Assignee: United Technologies Corporation
    Inventors: James J. Moor, Herbert A. Chin, Greg Czeladko, Gene A. Danko, Andrew L. Haynes, Wangen Lin, Vincent Nevins, Robert P. Schaefer, Eberhardt Privitzer
  • Publication number: 20160348519
    Abstract: The present disclosure relates generally to a system and method for applying a metallic coating. A first metallic coating may be applied to a portion of a total surface of a part and a second metallic coating may be applied to substantially the total surface. The metallic coating may be applied to a vane cluster for use in a turbomachine.
    Type: Application
    Filed: February 11, 2015
    Publication date: December 1, 2016
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Giovanni Whitman, Henry H. Thayer, Gary J. Larson, Wangen Lin, Donn Blankenship
  • Publication number: 20160271731
    Abstract: A method of reworking or repairing a component includes removing a casting defect from a component manufactured of a non-fusion weldable base alloy to form a cavity that results in a through hole; sealing the through hole with a backing; and at least partially filling the cavity with a multiple of layers of a multiple of laser powder deposition spots, each of the multiple of laser powder deposition spots formed of a filler alloy, a first layer of the multiple of layers includes a perimeter of the multiple of laser powder deposition spots that overlap a wall of the cavity and the backing.
    Type: Application
    Filed: September 16, 2014
    Publication date: September 22, 2016
    Inventor: Wangen Lin
  • Publication number: 20160243650
    Abstract: A method of reworking an aerospace component includes removing a casting defect from a component manufactured of a non-fusion weldable base alloy to form a cavity. The cavity is then at least partially filled with a multiple of layers of discrete laser powder deposition spots of a filler alloy. A cast component for a gas turbine engine includes a cast component non-fusion weldable base alloy with a cavity filled with a multiple of layers of laser powder deposition spots of a filler alloy. The filler alloy may be different than the non-fusion weldable base alloy. A layer of non-fusion weldable base alloy is at least partially within the cavity and over the filler alloy.
    Type: Application
    Filed: October 24, 2014
    Publication date: August 25, 2016
    Inventors: Wangen Lin, Gary J. Larson, Giovanni Whitman, Scott Poeppel, Joseph Wilson
  • Publication number: 20160236298
    Abstract: A method is provided for reworking a component. The method includes at least partially filling a cavity in a non-fusion weldable base alloy with a multiple of layers of a multiple of laser powder deposition spots formed of a filler alloy. Each of the multiple of laser powder deposition spots at least partially overlaps at least one of another of the multiple of laser powder deposition spots. The filler alloy may be different than the non-fusion weldable base alloy.
    Type: Application
    Filed: October 24, 2014
    Publication date: August 18, 2016
    Inventors: John T. Ols, Wangen Lin, Giovanni Whitman
  • Publication number: 20160167180
    Abstract: A method for coating a part according to an aspect of the disclosure includes the step binding a metallic powder to a section of the part. The metallic powder is then energized which at least partially melts and resolidifies the metallic powder to form a first metallic coating. After the first layer of metallic coating is formed a second layer of metallic coating is deposited on substantially all of the part.
    Type: Application
    Filed: December 10, 2015
    Publication date: June 16, 2016
    Applicant: United Technologies Corporation
    Inventors: Henry H. Thayer, Giovanni Whitman, Gary J. Larson, Wangen Lin
  • Publication number: 20150190891
    Abstract: A method of repairing defects in a casting formed from non-weldable or difficult-to-weld alloys is disclosed. The method includes removing the defect from the casting thereby forming a cavity in the casting, placing a filler material in the cavity and fusion welding the filler material in the cavity. The fusion welding produces surface cracks on the casting and sub-surface cracks in the casting. The method then includes brazing at least some of the surface cracks on the casting and processing the casting with a hot isostatic pressure (HIP) process to close at least some of the sub-surface cracks in the casting.
    Type: Application
    Filed: July 19, 2013
    Publication date: July 9, 2015
    Inventors: Wangen Lin, Robert P. Schaefer, Chris Vargas
  • Patent number: 8616852
    Abstract: A method of repairing a rotor blade, for example on an integrally bladed rotor, includes preparing a surface on a damaged area of the blade. The blade has first and second airfoil surfaces adjoining the prepared surface that are spaced apart a distance. An edge of a patch abuts the prepared surface to provide a weld interface defining a welding plane. First and second cover sheets respectively overlap the first and second airfoil surfaces. The first and second cover sheets adjoin the edge and the first and second airfoil surfaces. The blade, patch and first and second cover sheets are welded along the welding plane providing a welded joint at the weld interface. The first and second cover sheets are substantially unsecured to the first and second airfoil surfaces subsequent to the welding operation.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: December 31, 2013
    Assignee: United Technologies Corporation
    Inventors: Wangen Lin, Robert W. Jackson, Andrew L. Haynes, John E. Matz, Adam Quagliaroli, Samuel T. Davidson, Herbert A. Chin
  • Patent number: 8613138
    Abstract: A method is provided for repairing a damaged rotor blade on an integrally bladed rotor by removing a damaged portion of a damaged blade leaving a blade stub extending outwardly from the disk and performing a linear friction welding operation to attach a replacement blade segment to the blade stub. The rotor may be disposed operation using a linear friction welding apparatus. The method includes disposing a support collar about the blade stub and securing the support collar to the linear friction welding apparatus prior to a commencement of the bonding operation. A lower surface of the support collar is contoured to mate with a portion of an outer circumference surface of the rotor disk.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: December 24, 2013
    Assignee: United Technologies Corporation
    Inventors: Herbert A. Chin, Robert P. Schaefer, Eberhardt Privitzer, Wangen Lin, Billie W. Bunting, James J. Moor, Vincent Nevins, Andrew L. Haynes, Greg Czeladko, Kenneth T. Raczewski
  • Patent number: 8611732
    Abstract: A device and method for locally heat treating at least one airfoil in an integrally bladed rotor device. A pair of IR heat sources are positioned to direct IR heat rays in the direction where local heat treatment is required. A pair of parabolic mirrors are positioned to direct the IR heat rays on to the metal component. The heat treating is useful after welding the airfoil on to the rotor device.
    Type: Grant
    Filed: July 18, 2011
    Date of Patent: December 17, 2013
    Assignee: United Technologies Corporation
    Inventors: Thomas DeMichael, James J. Moor, Herbert A. Chin, Wangen Lin
  • Publication number: 20130266298
    Abstract: A device and method for locally heat treating at least one airfoil in an integrally bladed rotor device. A pair of IR heat sources are positioned to direct IR heat rays in the direction where local heat treatment is required. A pair of parabolic mirrors are positioned to direct the IR heat rays on to the metal component. The heat treating is useful after welding the airfoil on to the rotor device.
    Type: Application
    Filed: June 7, 2013
    Publication date: October 10, 2013
    Inventors: James J. Moor, Thomas DeMichael, Herbert A. Chin, Wangen Lin
  • Patent number: 8479391
    Abstract: A method of repairing an integrally bladed rotor includes the steps of placing a support collar around at least a leading and trailing edge portions of the blade stub, and performing linear friction welding to add a replacement airfoil to the blade stub. The linear friction welding is generally along a direction between the leading and trailing edges. In addition, the support collar leading and trailing edge portions are connected together.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: July 9, 2013
    Assignee: United Technologies Corporation
    Inventors: Herbert A. Chin, Robert P. Schaefer, Eberhardt Privitzer, Wangen Lin, Billie W. Bunting, James J. Moor, Vincent Nevins, Jr., Andrew L. Haynes, Greg Czeladko, Kenneth T. Raczewski
  • Patent number: 8437628
    Abstract: A process for heat treating selected portions of an integrally bladed rotor (IBR) having a plurality of blades, the process using an IBR on a fixture having a rotor engaging portion that moves the IBR into an environmental chamber. An IR heater is placed on one of the IBR blades and heat treated after air has been removed from the chamber and an inert gas is added. The IR heater is lifted from the blade and indexed to position another blade on the IBR. The process is repeated until all the IBR blades are heat treated.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: May 7, 2013
    Assignee: United Technologies Corporation
    Inventors: Wangen Lin, James J. Moor, Thomas DeMichael, Herbert A. Chin, Melissa R. Hill, Michael J. Labbe
  • Patent number: 8375581
    Abstract: A method and apparatus for fixturing an airfoil stub during linear friction welding are described. Critical clamping support structures are manufactured by a direct digital manufacturing process such as direct metal laser sintering to minimize time and expense of the process.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: February 19, 2013
    Assignee: United Technologies Corporation
    Inventors: James Romanelli, Wangen Lin, Robert P. Delisle, Herbert A. Chin, James J. Moor, Jesse R. Boyer
  • Publication number: 20130022339
    Abstract: A device and method for locally heat treating at least one airfoil in an integrally bladed rotor device. A pair of IR heat sources are positioned to direct IR heat rays in the direction where local heat treatment is required. A pair of parabolic mirrors are positioned to direct the IR heat rays on to the metal component. The heat treating is useful after welding the airfoil on to the rotor device.
    Type: Application
    Filed: July 18, 2011
    Publication date: January 24, 2013
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Thomas DeMichael, James J. Moor, Herbert A. Chin, Wangen Lin
  • Publication number: 20120279066
    Abstract: A method is disclosed for welding a first metal to a Ti-6246 alloy airfoil. The method consists of depositing weld metal by fusion welding and reshaping the airfoil to predetermined dimensions. A post weld heat treatment is applied to relieve residual stresses. Surface treatment such as laser shock peening introduces residual surface compressive stresses to enhance the mechanical integrity of the airfoil.
    Type: Application
    Filed: May 6, 2011
    Publication date: November 8, 2012
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Herbert A. Chin, Robert P. Schaefer, Andrew L. Haynes, David G. Alexander, Sonia A. Martinez, Wangen Lin
  • Publication number: 20120205348
    Abstract: A method and apparatus for fixturing an airfoil stub during linear friction welding are described. Critical clamping support structures are manufactured by a direct digital manufacturing process such as direct metal laser sintering to minimize time and expense of the process.
    Type: Application
    Filed: February 14, 2011
    Publication date: August 16, 2012
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: James Romanelli, Wangen Lin, Robert P. Delisle, Herbert A. Chin, James J. Moor, Jesse R. Boyer
  • Patent number: 8240999
    Abstract: A hollow airfoil and a method for manufacturing a hollow airfoil is provided.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: August 14, 2012
    Assignee: United Technologies Corporation
    Inventors: Mario P. Bochiechio, Thomas J. Watson, Wangen Lin, John Joseph Marcin, Joseph Parkos, Jr.
  • Publication number: 20120099998
    Abstract: An example method of attaching an airfoil for an integrally bladed rotor includes placing a support collar in an installed position around at least a leading edge and trailing edge of an airfoil stub to be repaired in an integrally bladed rotor. The support collar and the airfoil stub together have a midline that is positioned between opposing, laterally outer surfaces of the airfoil stub when the support collar is in the installed position. The method performs linear friction welding to add a replacement airfoil to the airfoil stub.
    Type: Application
    Filed: October 22, 2010
    Publication date: April 26, 2012
    Inventors: James J. Moor, Herbert A. Chin, Greg Czeladko, Gene A. Danko, Andrew L. Haynes, Wangen Lin, Vincent Navins, Robert P. Schaefer, Eberhardt Privitzer
  • Publication number: 20110138624
    Abstract: A method of repairing an integrally bladed rotor includes the steps of placing a support collar around at least a leading and trailing edge portions of the blade stub, and performing linear friction welding to add a replacement airfoil to the blade stub. The linear friction welding is generally along a direction between the leading and trailing edges. In addition, the support collar leading and trailing edge portions are connected together.
    Type: Application
    Filed: December 16, 2009
    Publication date: June 16, 2011
    Inventors: Herbert A. Chin, Robert P. Schaefer, Eberhardt Privitzer, Wangen Lin, Billie W. Bunting, James J. Moor, Vincent Nevins, JR., Andrew L. Haynes, Greg Czeladko, Kenneth T. Raczewski