Patents by Inventor Ward E. TeGrotenhuis

Ward E. TeGrotenhuis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7344576
    Abstract: Methods of separating fluids using capillary forces and/or improved conditions for are disclosed. The improved methods may include control of the ratio of gas and liquid Reynolds numbers relative to the Suratman number. Also disclosed are wick-containing, laminated devices that are capable of separating fluids.
    Type: Grant
    Filed: March 1, 2005
    Date of Patent: March 18, 2008
    Assignee: Battelle Memorial Institute
    Inventors: Ward E. TeGrotenhuis, Victoria S. Stenkamp
  • Patent number: 7297324
    Abstract: Microchannel devices and method of use are disclosed wherein a reaction microchamber 52 is in thermal contact with a heat exchange channel 61. An equilibrium limited exothermic chemical process occurs in the reaction microchamber 52. Sufficient heat is transferred to the heat exchange channels to substantially lower the temperature in the reaction microchamber 52 down its length to substantially increase at least one performance parameter of the exothermic chemical process relative to isothermal operation. Optionally, an endothermic reaction occurs in the heat exchange channel 61 which is sustained by the exothermic chemical process occurring the exothermic reaction chamber. Both the reaction chamber 52 and the heat exchange channel 61 can be of micro dimension. Catalyst 75 can be provided in the microchamber 52 in sheet form such that reactants flow by the catalyst sheet.
    Type: Grant
    Filed: March 11, 2003
    Date of Patent: November 20, 2007
    Assignee: Battelle Memorial Institute
    Inventors: Ward E. TeGrotenhuis, David L. King, Greg A. Whyatt, Christopher M. Fischer, Robert S. Wegeng, Kriston P. Brooks
  • Patent number: 7272941
    Abstract: Wick-Containing apparatus capable of separating fluids and methods of separating fluids using wicks are disclosed.
    Type: Grant
    Filed: September 27, 2005
    Date of Patent: September 25, 2007
    Assignee: Battelle Memorial Institute
    Inventors: Ward E. TeGrotenhuis, Victoria S. Stenkamp
  • Patent number: 7270905
    Abstract: Various aspects and applications of microsystem process networks are described. The design of many types of Microsystems can be improved by ortho-cascading mass, heat, or other unit process operations. Microsystems having energetically efficient microchannel heat exchangers are also described. Detailed descriptions of numerous design features in microcomponent systems are also provided.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: September 18, 2007
    Assignee: Battelle Memorial Institute
    Inventors: Robert S. Wegeng, Ward E. TeGrotenhuis, Greg A. Whyatt
  • Patent number: 7125540
    Abstract: Various aspects and applications of microsystem process networks are described. The design of many types of microsystems can be improved by ortho-cascading mass, heat, or other unit process operations. Microsystems having exergetically efficient microchannel heat exchangers are also described. Detailed descriptions of numerous design features in microcomponent systems are also provided.
    Type: Grant
    Filed: June 6, 2000
    Date of Patent: October 24, 2006
    Assignee: Battelle Memorial Institute
    Inventors: Robert S. Wegeng, Ward E. TeGrotenhuis, Greg A. Whyatt
  • Patent number: 7051540
    Abstract: Wick-Containing apparatus capable of separating fluids and methods of separating fluids using wicks are disclosed.
    Type: Grant
    Filed: April 23, 2003
    Date of Patent: May 30, 2006
    Assignee: Battelle Memorial Institute
    Inventors: Ward E. TeGrotenhuis, Victoria S. Stenkamp
  • Patent number: 6974496
    Abstract: The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: December 13, 2005
    Assignee: Battelle Memorial Institute
    Inventors: Robert S. Wegeng, Scot D. Rassat, Victoria S. Stenkamp, Ward E. TeGrotenhuis, Dean W. Matson, M. Kevin Drost, Vilayanur V. Viswanathan
  • Patent number: 6875247
    Abstract: Methods of separating fluids using capillary forces and/or improved conditions for are disclosed. The improved methods may include control of the ratio of gas and liquid Reynolds numbers relative to the Suratman number. Also disclosed are wick-containing, laminated devices that are capable of separating fluids.
    Type: Grant
    Filed: December 5, 2001
    Date of Patent: April 5, 2005
    Assignee: Battelle Memorial Institute
    Inventors: Ward E. TeGrotenhuis, Victoria S. Stenkamp
  • Patent number: 6869462
    Abstract: A microchannel contactor and methods of contacting substances in microchannel apparatus are described. Some preferred embodiments are combined with microchannel heat exchange.
    Type: Grant
    Filed: March 7, 2003
    Date of Patent: March 22, 2005
    Assignee: Battelle Memorial Institute
    Inventors: Ward E. TeGrotenhuis, Scot D. Rassat, Victoria S. Stenkamp
  • Patent number: 6746515
    Abstract: The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. In another aspect, the apparatus or methods utilize heat exchange channels of varying lengths that have volumes controlled to provide equal heat fluxes. Methods of fuel cell startup are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.
    Type: Grant
    Filed: April 29, 2002
    Date of Patent: June 8, 2004
    Assignee: Battelle Memorial Institute
    Inventors: Robert S. Wegeng, Scot D. Rassat, Ward E. TeGrotenhuis, Kevin Drost, Vilayanur V. Vishwanathan
  • Publication number: 20040069144
    Abstract: The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.
    Type: Application
    Filed: June 30, 2003
    Publication date: April 15, 2004
    Inventors: Robert S. Wegeng, Scot D. Rassat, Victoria S. Stenkamp, Ward E. TeGrotenhuis, Dean W. Matson, M. Kevin Drost, Vilayanur V. Viswanathan
  • Patent number: 6666909
    Abstract: Laminated, multiphase separators and contactors having wicking structures and gas flow channels are described. Some preferred embodiments are combined with microchannel heat exchange. Integrated systems containing these components are also part of the present invention.
    Type: Grant
    Filed: June 6, 2000
    Date of Patent: December 23, 2003
    Assignee: Battelle Memorial Institute
    Inventors: Ward E. TeGrotenhuis, Robert S. Wegeng, Greg A. Whyatt, Victoria S. Stenkamp, Phillip A. Gauglitz
  • Publication number: 20030221554
    Abstract: A microchannel contactor and methods of contacting substances in microchannel apparatus are described. Some preferred embodiments are combined with microchannel heat exchange.
    Type: Application
    Filed: March 7, 2003
    Publication date: December 4, 2003
    Inventors: Ward E. TeGrotenhuis, Scot D. Rassat, Victoria S. Stenkamp
  • Patent number: 6630012
    Abstract: The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.
    Type: Grant
    Filed: April 30, 2001
    Date of Patent: October 7, 2003
    Assignee: Battelle Memorial Institute
    Inventors: Robert S. Wegeng, Scot D. Rassat, Victoria S. Stenkamp, Ward E. TeGrotenhuis, Dean W. Matson, M. Kevin Drost, Vilayanur V. Viswanathan
  • Publication number: 20030180216
    Abstract: Microchannel devices and method of use are disclosed wherein a reaction microchamber 52 is in thermal contact with a heat exchange channel 61. An equilibrium limited exothermic chemical process occurs in the reaction microchamber 52. Sufficient heat is transferred to the heat exchange channels to substantially lower the temperature in the reaction microchamber 52 down its length to substantially increase at least one performance parameter of the exothermic chemical process relative to isothermal operation. Optionally, an endothermic reaction occurs in the heat exchange channel 61 which is sustained by the exothermic chemical process occurring the exothermic reaction chamber. Both the reaction chamber 52 and the heat exchange channel 61 can be of micro dimension. Catalyst 75 can be provided in the microchamber 52 in sheet form such that reactants flow by the catalyst sheet.
    Type: Application
    Filed: March 11, 2003
    Publication date: September 25, 2003
    Inventors: Ward E. TeGrotenhuis, David L. King, Greg A. Whyatt, Christopher M. Fischer, Robert S. Wegeng, Kriston P. Brooks
  • Publication number: 20030015093
    Abstract: The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.
    Type: Application
    Filed: April 30, 2001
    Publication date: January 23, 2003
    Inventors: Robert S. Wegeng, Scot D. Rassat, Victoria S. Stenkamp, Ward E. TeGrotenhuis, Dean W. Matson, M. Kevin Drost, Vilayanur V. Viswanathan
  • Publication number: 20020194990
    Abstract: The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. In another aspect, the apparatus or methods utilize heat exchange channels of varying lengths that have volumes controlled to provide equal heat fluxes. Methods of fuel cell startup are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.
    Type: Application
    Filed: April 29, 2002
    Publication date: December 26, 2002
    Inventors: Robert S. Wegeng, Scot D. Rassat, Ward E. TeGrotenhuis, Kevin Drost, Vilayanur V. Vishwanathan
  • Publication number: 20020144600
    Abstract: Methods of separating fluids using capillary forces and/or improved conditions for are disclosed. The improved methods may include control of the ratio of gas and liquid Reynolds numbers relative to the Suratman number. Also disclosed are wick-containing, laminated devices that are capable of separating fluids.
    Type: Application
    Filed: December 5, 2001
    Publication date: October 10, 2002
    Inventors: Ward E. TeGrotenhuis, Victoria S. Stenkamp
  • Patent number: 5598874
    Abstract: Hollow fiber membrane modules are manufactured by weaving hollow fiber membranes into a web while the fibers still contain a residual amount of the organic liquids used in the extrusion of the fibers. The web once formed is then passed through a final solvent extraction stage, followed by drying and heating to fix the final form and permeation characteristics of the membranes, and finally rolling the web into a bundle which forms the interior of the module. The hollow fibers are woven as fill in the web.
    Type: Grant
    Filed: August 11, 1995
    Date of Patent: February 4, 1997
    Assignee: MG Generon, Inc.
    Inventors: Philip E. Alei, Jeff C. Schletz, John A. Jensvold, Ward E. Tegrotenhuis, Wickham Allen, Frederick L. Coan, Karen L. Skala, Daniel O. Clark, Harold V. Wait, Jr.