Patents by Inventor Ward R. Spears

Ward R. Spears has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6852401
    Abstract: A composite-based rim and methods for manufacturing such a rim are provided. The rim includes multiple fiber-based, co-mingled layers, wherein the strength and/or stiffness of the layers increases from the innermost layer of the rim to the outermost layer of the rim, but where the radial stress and strain generated in the rim decreases from the innermost layer to the outermost layer. Incorporation of this rim into a high stress and strain usage environment, such as a flywheel system, allows the rim to be spun at high speeds in order to generate high levels of kinetic energy while beneficially managing the amount of strain and radial stresses generated within the rim, and, in turn, minimizing or at least controlling the formation and propagation of cracks within the rim.
    Type: Grant
    Filed: September 13, 2001
    Date of Patent: February 8, 2005
    Assignee: Beacon Power Corporation
    Inventors: Ward R. Spears, Cynthia L. Shirey
  • Patent number: 6824861
    Abstract: A composite-based rim and methods for manufacturing such a rim are provided. The rim includes multiple fiber-based, co-mingled layers, wherein the strength and/or stiffness of the layers increases from the innermost layer of the rim to the outermost layer of the rim, but where the radial stress and strain generated in the rim decreases from the innermost layer to the outermost layer. Incorporation of this rim into a high stress and strain usage environment, such as a flywheel system, allows the rim to be spun at high speeds in order to generate high levels of kinetic energy while beneficially managing the amount of strain and radial stresses generated within the rim, and, in turn, minimizing or at least controlling the formation and propagation of cracks within the rim.
    Type: Grant
    Filed: September 13, 2001
    Date of Patent: November 30, 2004
    Assignee: Beacon Power Corporation
    Inventor: Ward R. Spears
  • Publication number: 20040076809
    Abstract: A composite-based rim includes multiple fiber-based, commingled layers wherein the strength and/or stiffness increases from the innermost to the outermost layer of the rim, but wherein the radial stress and strain generated in the rim decreases from the innermost to the outermost layer. At least some layers have a mixture of carbon fiber tows and glass fiber tows. The ratio of carbon fiber tows to glass fiber tows in each layer is constant, and the distribution of carbon fiber tows is macroscopically uniform in each layer.
    Type: Application
    Filed: July 3, 2003
    Publication date: April 22, 2004
    Inventor: Ward R. Spears
  • Publication number: 20030049430
    Abstract: A composite-based rim and methods for manufacturing such a rim are provided. The rim includes multiple fiber-based, co-mingled layers, wherein the strength and/or stiffness of the layers increases from the innermost layer of the rim to the outermost layer of the rim, but where the radial stress and strain generated in the rim decreases from the innermost layer to the outermost layer. Incorporation of this rim into a high stress and strain usage environment, such as a flywheel system, allows the rim to be spun at high speeds in order to generate high levels of kinetic energy while beneficially managing the amount of strain and radial stresses generated within the rim, and, in turn, minimizing or at least controlling the formation and propagation of cracks within the rim.
    Type: Application
    Filed: September 13, 2001
    Publication date: March 13, 2003
    Inventor: Ward R. Spears
  • Publication number: 20030049429
    Abstract: A composite-based rim and methods for manufacturing such a rim are provided. The rim includes multiple fiber-based, co-mingled layers, wherein the strength and/or stiffness of the layers increases from the innermost layer of the rim to the outermost layer of the rim, but where the radial stress and strain generated in the rim decreases from the innermost layer to the outermost layer. Incorporation of this rim into a high stress and strain usage environment, such as a flywheel system, allows the rim to be spun at high speeds in order to generate high levels of kinetic energy while beneficially managing the amount of strain and radial stresses generated within the rim, and, in turn, minimizing or at least controlling the formation and propagation of cracks within the rim.
    Type: Application
    Filed: September 13, 2001
    Publication date: March 13, 2003
    Inventors: Ward R. Spears, Cynthia L. Shirey