Patents by Inventor Warren Arthur Nelson

Warren Arthur Nelson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7141110
    Abstract: Erosion resistant coating processes and material improvements for line-of-sight applications. The erosion resistant coating composition includes nanostructured grains of tungsten carbide (WC) and/or submicron sized grains of WC embedded into a cobalt chromium (CoCr) binder matrix. A high velocity air fuel thermal spray process (HVAF) is used to create thick coatings in excess of about 500 microns with high percentages of primary carbide for longer life better erosion resistant coatings. These materials and processes are especially suited for hydroelectric turbine components.
    Type: Grant
    Filed: December 31, 2003
    Date of Patent: November 28, 2006
    Assignee: General Electric Company
    Inventors: Dennis Michael Gray, Krishnamurthy Anand, Warren Arthur Nelson, Hans Aunemo, Alain Demers, Olav Rommetveit
  • Patent number: 6637643
    Abstract: A method for applying at least one bond coating on a surface of a metal-based substrate is described. A foil of the bond coating material is first attached to the substrate surface and then fused thereto, e.g., by brazing. The foil is often initially prepared by thermally spraying the bond coating material onto a removable support sheet, and then detaching the support sheet. Optionally, the foil may also include a thermal barrier coating applied over the bond coating. The substrate can be a turbine engine component.
    Type: Grant
    Filed: February 4, 2002
    Date of Patent: October 28, 2003
    Assignee: General Electric Company
    Inventors: Wayne Charles Hasz, Marcus Preston Borom, Warren Arthur Nelson, James Edward Viggiani, John Zanneti
  • Patent number: 6503574
    Abstract: An article having a substrate is protected by a thermal barrier coating system. An interfacial layer contacts the upper surface of the substrate. The interfacial layer may comprise a bond coat only, or a bond coat and an overlay coat. The interfacial layer has on its upper surface a preselected, controllable pattern of three-dimensional features, such as grooves in a parallel array or in two angularly offset arrays. The features are formed by an ablation process using an ultraviolet laser such as an excimer laser. A ceramic thermal barrier coating is deposited over the pattern of features on the upper surface of the interfacial layer.
    Type: Grant
    Filed: December 22, 1994
    Date of Patent: January 7, 2003
    Assignee: General Electric Co.
    Inventors: David William Skelly, Bangalore Aswatha Nagaraj, David John Wortman, David Vincent Rigney, Seetha Ramaiah Mannava, Rudolfo Viguie, Robert William Bruce, Warren Arthur Nelson, Curtis Alan Johnson, Bhupendra Kumar Gupta
  • Publication number: 20020102409
    Abstract: A method for applying at least one bond coating on a surface of a metal-based substrate is described. A foil of the bond coating material is first attached to the substrate surface and then fused thereto, e.g., by brazing. The foil is often initially prepared by thermally spraying the bond coating material onto a removable support sheet, and then detaching the support sheet. Optionally, the foil may also include a thermal barrier coating applied over the bond coating. The substrate can be a turbine engine component.
    Type: Application
    Filed: February 4, 2002
    Publication date: August 1, 2002
    Inventors: Wayne Charles Hasz, Marcus Preston Borom, Warren Arthur Nelson, James Edward Viggiani, John Zanneti
  • Patent number: 6306517
    Abstract: An article having a spallation resistant TBC comprises a metal substrate, such as a high temperature superalloy, and a TBC, such as a coating of yttria stabilized zirconia. The TBC comprises a plurality of plasma-sprayed layers. The TBC has a coherent, continuous columnar grain microstructure, wherein at least one layer has a plurality of continuous columnar grains which have been extended by directional solidification into an adjacent layer.
    Type: Grant
    Filed: August 3, 2000
    Date of Patent: October 23, 2001
    Assignee: General Electric Company
    Inventors: Dennis Michael Gray, Yuk-Chiu Lau, Curtis Alan Johnson, Marcus Preston Borom, Warren Arthur Nelson
  • Patent number: 6294261
    Abstract: A method for smoothing the surface of a ceramic-based protective coating which exhibits roughness is disclosed. The method includes the steps of applying a ceramic-based slurry or gel coating to the protective coating surface; heating the slurry/gel coating to remove volatile material; and then further heating the slurry/gel coating to cure the coating and bond it to the underlying protective coating. The slurry/gel coating is often based on yttria-stabilized zirconia, and precursors of an oxide matrix. Related articles of manufacture are also described.
    Type: Grant
    Filed: October 1, 1999
    Date of Patent: September 25, 2001
    Assignee: General Electric Company
    Inventors: D. Sangeeta, Curtis Alan Johnson, Warren Arthur Nelson
  • Patent number: 6180184
    Abstract: An article having a spallation resistant TBC comprises a metal substrate, such as a high temperature superalloy, and a TBC, such as a coating of yttria stabilized zirconia. The TBC comprises a plurality of plasma-sprayed layers. The TBC has a coherent, continuous columnar grain microstructure, wherein at least one layer has a plurality of continuous columnar grains which have been extended by directional solidification into an adjacent layer. In a preferred embodiment, the coherent, continuous columnar microstructure comprises substantially all of the volume of TBC. A coherent, continuous columnar grain microstructure is also taught wherein at least some of the plurality of coherent, continuous columnar grains which comprise a TBC extend through essentially the entire thickness of the coating.
    Type: Grant
    Filed: October 24, 1997
    Date of Patent: January 30, 2001
    Assignee: General Electric Company
    Inventors: Dennis Michael Gray, Yuk-Chiu Lau, Curtis Alan Johnson, Marcus Preston Borom, Warren Arthur Nelson
  • Patent number: 5830586
    Abstract: An article having a spallation resistant TBC comprises a metal substrate, such as a high temperature superalloy, and a TBC, such as a coating of yttria stabilized zirconia. The TBC comprises a plurality of plasma-sprayed layers. The TBC has a coherent, continuous columnar grain microstructure, wherein at least one layer has a plurality of continuous columnar grains which have been extended by directional solidification into an adjacent layer. In a preferred embodiment, the coherent, continuous columnar microstructure comprises substantially all of the volume of TBC. A coherent, continuous columnar grain microstructure is also taught wherein at least some of the plurality of coherent, continuous columnar grains which comprise a TBC extend through essentially the entire thickness of the coating.
    Type: Grant
    Filed: July 29, 1996
    Date of Patent: November 3, 1998
    Assignee: General Electric Company
    Inventors: Dennis Michael Gray, Yuk-Chiu Lau, Curtis Alan Johnson, Marcus Preston Borom, Warren Arthur Nelson