Patents by Inventor Warren B. Ames

Warren B. Ames has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11292977
    Abstract: Methods are provided for processing deasphalted gas oils derived from thermally cracked resid fractions to form Group I, Group II, and/or Group III lubricant base oils. The yield of lubricant base oils (optionally also referred to as base stocks) can be increased by thermally cracking a resid fraction at an intermediate level of single pass severity relative to conventional methods. By performing thermal cracking to a partial level of conversion, compounds within a resid fraction that are beneficial for increasing both the viscosity and the viscosity index of a lubricant base oil can be retained, thus allowing for an improved yield of higher viscosity lubricant base oils from a thermally cracked resid fraction.
    Type: Grant
    Filed: October 9, 2020
    Date of Patent: April 5, 2022
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Stephen H. Brown, Brenda A. Raich, Beatrice M. Gooding, Stephen M. Davis, Federico Barrai, Warren B. Ames, Keith K. Aldous
  • Publication number: 20210024846
    Abstract: Methods are provided for processing deasphalted gas oils derived from thermally cracked resid fractions to form Group I, Group II, and/or Group III lubricant base oils. The yield of lubricant base oils (optionally also referred to as base stocks) can be increased by thermally cracking a resid fraction at an intermediate level of single pass severity relative to conventional methods. By performing thermal cracking to a partial level of conversion, compounds within a resid fraction that are beneficial for increasing both the viscosity and the viscosity index of a lubricant base oil can be retained, thus allowing for an improved yield of higher viscosity lubricant base oils from a thermally cracked resid fraction.
    Type: Application
    Filed: October 9, 2020
    Publication date: January 28, 2021
    Inventors: Stephen H. Brown, Brenda A. Raich, Beatrice M. Gooding, Stephen M. Davis, Federico Barrai, Warren B. Ames, Keith K. Aldous
  • Publication number: 20200181497
    Abstract: A method for producing pitch can include: hydroprocessing a challenged feed from a refinery operation to produce a hydroprocessed product; distilling the hydroprocessed product to yield one or more upgraded fractions and a resid fraction; and solvent deasphalting the resid fraction to yield a deasphalted oil stream and a hydroprocessed pitch stream. The resultant pitch can have a micro carbon residue (MCR) of 50 wt % or greater, a solubility in toluene of 95 wt % or greater, and a softening point of 200° C. or less. The pitch can optionally be fluxed with a fluxing solvent.
    Type: Application
    Filed: December 9, 2019
    Publication date: June 11, 2020
    Inventors: Stephen H. Brown, G. Alan Vaughan, Patrick L. Hanks, Keith K. Aldous, Warren B. Ames, Federico Barrai, Samia Ilias, Randolph J. Smiley, David C. Boyer
  • Publication number: 20170022433
    Abstract: Systems and methods are provided for fixed bed hydroprocessing of deasphalter rock. Instead of attempting to process vacuum resid in a fixed bed processing unit, vacuum resid is deasphalted to form a deasphalted oil and deasphalter residue or rock. The rock can then be hydroprocessed in a fixed bed reaction zone, optionally after combining the rock with an aromatic co-feed and/or a hydroprocessing solvent. This can allow for improved conversion of the deasphalter rock and/or improved combined conversion of the deasphalter rock and deasphalted oil.
    Type: Application
    Filed: July 6, 2016
    Publication date: January 26, 2017
    Inventors: Stephen H. BROWN, Warren B. AMES, Federico BARRAI
  • Publication number: 20160298048
    Abstract: Methods are provided for processing deasphalted gas oils derived from thermally cracked resid fractions to form Group I, Group II, and/or Group III lubricant base oils. The yield of lubricant base oils (optionally also referred to as base stocks) can be increased by thermally cracking a resid fraction at an intermediate level of single pass severity relative to conventional methods. By performing thermal cracking to a partial level of conversion, compounds within a resid fraction that are beneficial for increasing both the viscosity and the viscosity index of a lubricant base oil can be retained, thus allowing for an improved yield of higher viscosity lubricant base oils from a thermally cracked resid fraction.
    Type: Application
    Filed: April 12, 2016
    Publication date: October 13, 2016
    Inventors: Stephen H. Brown, Brenda A. Raich, Beatrice M. Gooding, Stephen M. Davis, Federico Barrai, Warren B. Ames, Keith K. Aldous