Patents by Inventor Warren M. Grill

Warren M. Grill has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5964702
    Abstract: A self-curling elongate non-conductive sheet (A) defines a helical cuff electrode (10). A plurality of contact members (40) are linearly disposed along a direction (C) between a first layer (30) and a second layer (32) of laminated elastomeric material. The first layer is stretched along direction (F) oblique to the direction (C) before lamination such that the cuff electrode is elastomerically biased to curl into a helix. Windows (50) are defined in the elastomeric first layer (31) and bonding layer (34) to provide for electrical conduction between the contact members (40) and the nerve tissue (60) about which the cuff is wrapped. Method steps for endoscopic implantation of the cuff electrode (10) include flattening and then sliding the cuff from a carrier (100), the cuff helically self-wrapping around the nerve as it is urged from the carrier held stationary.
    Type: Grant
    Filed: July 30, 1997
    Date of Patent: October 12, 1999
    Assignee: Case Western Reserve University
    Inventors: Warren M. Grill, Jr., Matthew D. Tarler, John T. Mortimer
  • Patent number: 5689877
    Abstract: A self-curling elongate non-conductive sheet (A) defines a helical cuff electrode (10). A plurality of contact members (40) are linearly disposed along a direction (C) between a first layer (30) and a second layer (32) of laminated elastomeric material. The first layer is stretched along direction (F) oblique to the direction (C) before lamination such that the cuff electrode is elastomerically biased to curl into a helix. Windows (50) are defined in the elastomeric first layer (31) and bonding layer (34) to provide for electrical conduction between the contact members (40) and the nerve tissue (60) about which the cuff is wrapped. Method steps for endoscopic implantation of the cuff electrode (10) include flattening and then sliding the cuff from a carrier (100), the cuff helically self-wrapping around the nerve as it is urged from the carrier held stationary.
    Type: Grant
    Filed: March 14, 1996
    Date of Patent: November 25, 1997
    Assignee: Case Western Reserve University
    Inventors: Warren M. Grill, Jr., Matthew D. Tarler, John T. Mortimer
  • Patent number: 5505201
    Abstract: A self-curling elongate non-conductive sheet (A) defines a helical cuff electrode (10). A plurality of contact members (40) are linearly disposed along a direction (C) between a first layer (30) and a second layer (32) of laminated elastomeric material. The first layer is stretched along direction (F) oblique to the direction (C) before lamination such that the cuff electrode is elastomerically biased to curl into a helix. Windows (50) are defined in the elastomeric first layer (31) and bonding layer (34) to provide for electrical conduction between the contact members (40) and the nerve tissue (60) about which the cuff is wrapped. Method steps for endoscopic implantation of the cuff electrode (10) include flattening and then sliding the cuff from a carrier (100), the cuff helically self-wrapping around the nerve as it is urged from the carrier held stationary.
    Type: Grant
    Filed: April 20, 1994
    Date of Patent: April 9, 1996
    Assignee: Case Western Reserve University
    Inventors: Warren M. Grill, Jr., Matthew D. Tarler, John T. Mortimer
  • Patent number: 5324322
    Abstract: A sheet (30) of polymeric material defines a cuff portion (A), a contact portion (B), and an interconnecting elongated lead portion (C). Using physical vapor deposition (PVD), chemical vapor deposition (CVD), or other thin film deposition techniques, a plurality of electrodes (12), contact pads (16), and interconnecting leads (14) are deposited on the base layer. An elastomer covering layer (18) is laminated to the base layer. The elastomeric covering layer is stretched along direction (24) before lamination, such that at least the cuff portion is elastomerically biased to curl into a spiral. Windows (20) are defined in the elastomeric portion to provide for electrical conduction between the electrodes (12) and nerve tissue about which the cuff electrode is wrapped. The electrodes are arced (FIG. 6) such that they are more recessed adjacent sides of the window than adjacent the center in order to provide a substantially uniform flux density across the electrode surface.
    Type: Grant
    Filed: April 20, 1992
    Date of Patent: June 28, 1994
    Assignee: Case Western Reserve University
    Inventors: Warren M. Grill, Jr., Graham H. Creasey, David A. Ksienski, Claude S. Veraart, J. Thomas Mortimer