Patents by Inventor Warren Tan King

Warren Tan King has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160184888
    Abstract: An article and a method for forming a single crystal casting are disclosed. The article includes a single crystal nickel-based superalloy having a composition including greater than about 80 ppm boron (B) and a substantially single crystal microstructure with at least one grain boundary. A creep rupture strength of the article is substantially maintained up to a mismatched grain boundary of about 40 degrees. The method for forming a single crystal casting includes positioning a mold on a cooling plate, the mold including a single crystal selector, providing a molten nickel-based superalloy composition in the mold, the molten composition including greater than about 80 ppm boron (B), cooling the molten composition with the cooling plate, and forming a unidirectional temperature gradient by withdrawing the mold from within a heat source to form the single crystal casting including a substantially single crystal microstructure having at least one grain boundary.
    Type: Application
    Filed: September 5, 2014
    Publication date: June 30, 2016
    Inventors: Arthur S. PECK, Warren Tan KING, Jon Conrad SCHAEFFER
  • Patent number: 9068275
    Abstract: A grain starter for use in solidification of molten metallic material forming an article having a directional grain structure and a method for solidifying an article having a directional grain structure with a substantial absence of stray grains. The grain starter comprises a grain-starting material that initiates grain growth in the molten metallic material in a preselected crystallographic direction. The grain-starting material has a melting temperature higher than the metallic material forming the article lest the grain starter be modified by contact with the molten material. The grain starter further includes a feature that modifies heat transfer characteristics of the metallic material in contact with it in order to produce an article having grains oriented in the preselected crystallographic orientation and modifies the profile of the advancing solidification front. The article is substantially free of stray grains not oriented in the preselected crystallographic direction.
    Type: Grant
    Filed: May 8, 2013
    Date of Patent: June 30, 2015
    Assignee: General Electric Company
    Inventors: Shan Liu, Warren Tan King, Srinivasan Raghavan, Arthur S. Peck, Dayananda Narayana
  • Publication number: 20140332175
    Abstract: A grain starter for use in solidification of molten metallic material forming an article having a directional grain structure and a method for solidifying an article having a directional grain structure with a substantial absence of stray grains. The grain starter comprises a grain-starting material that initiates grain growth in the molten metallic material in a preselected crystallographic direction. The grain-starting material has a melting temperature higher than the metallic material forming the article lest the grain starter be modified by contact with the molten material. The grain starter further includes a feature that modifies heat transfer characteristics of the metallic material in contact with it in order to produce an article having grains oriented in the preselected crystallographic orientation and modifies the profile of the advancing solidification front. The article is substantially free of stray grains not oriented in the preselected crystallographic direction.
    Type: Application
    Filed: May 8, 2013
    Publication date: November 13, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Shan LIU, Warren Tan KING, Srinivasan RAGHAVAN, Arthur S. PECK, Dayananda NARAYANA
  • Patent number: 8641381
    Abstract: A turbine bucket includes an airfoil and a shroud. The shroud includes first and second bearing surfaces, and the first and second bearing surfaces each comprise a single grain structure. A method for forming a turbine bucket includes orienting a mold vertically, wherein the mold includes a first portion that defines a shank, a second portion connected to the first portion that defines an airfoil, and a third portion connected to the second portion that defines a shroud, wherein the third portion includes first and second sides, and wherein the first portion is higher than the second portion and the second portion is higher than the third portion. The method further includes flowing a molten metal into the mold and selectively growing large single grains in at least one of the first or second sides.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: February 4, 2014
    Assignee: General Electric Company
    Inventors: Warren Tan King, Srikanth Chandrudu Kottilingam, Arthur Samuel Peck
  • Publication number: 20110255984
    Abstract: A turbine bucket includes an airfoil and a shroud. The shroud includes first and second bearing surfaces, and the first and second bearing surfaces each comprise a single grain structure. A method for forming a turbine bucket includes orienting a mold vertically, wherein the mold includes a first portion that defines a shank, a second portion connected to the first portion that defines an airfoil, and a third portion connected to the second portion that defines a shroud, wherein the third portion includes first and second sides, and wherein the first portion is higher than the second portion and the second portion is higher than the third portion. The method further includes flowing a molten metal into the mold and selectively growing large single grains in at least one of the first or second sides.
    Type: Application
    Filed: April 14, 2010
    Publication date: October 20, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Warren Tan King, Srikanth Chandrudu Kottilingam, Arthur Samuel Peck
  • Publication number: 20100170079
    Abstract: A method of treating a component made of a non magnetic alloy on which a magnetic surface layer has formed includes: (a) engaging a magnet of a calibrated magnet gauge with a surface of the component; (b) disengaging the magnet from the surface of the component and measuring a force required to disengage the magnet; (c) correlating the force with a thickness of the magnetic surface layer; and (d) if the thickness of the surface layer is greater than a predetermined minimum thickness, removing the surface layer.
    Type: Application
    Filed: January 8, 2009
    Publication date: July 8, 2010
    Applicant: General Electric Company
    Inventors: Warren Tan KING, Stephen Gerard Pope, Susan Drake
  • Patent number: 7220326
    Abstract: A family of castable and weldable nickel-base alloys that exhibit a desirable balance of strength and resistance to corrosion and oxidation suitable for gas turbine engine applications. A first alloy consists essentially of, by weight, 1 8% to 20% cobalt, 22.2% to 22.8% chromium, 1.8% to 2.2% tungsten, greater than 1.5% to 2.3% aluminum, 1.6% to 2.4% titanium, where the sum of aluminum and titanium is 2.8% to 4.4%, 0.7% to 0.9% columbium, 0.9% to 1.9% tantalum, 0.003% to 0.009% boron, 0.002% to 0.02% zirconium, 0.05% to 0.10% carbon, with the balance essentially nickel and incidental impurities. A second alloy consists essentially of, by weight, 5% to 8% cobalt, 22.2% to 22.8% chromium, 1.8% to 2.2% tungsten, 1.2% to 2.3% aluminum, 1.6% to 2.4% titanium, where the sum of aluminum and titanium is 2.8% to 4.4%, 0.7% to 0.9% columbium, 0.9% to 1.9% tantalum, 0.003% to 0.009% boron, 0.002% to 0.02% zirconium, 0.05% to 0.10% carbon, with the balance essentially nickel and incidental impurities.
    Type: Grant
    Filed: September 26, 2002
    Date of Patent: May 22, 2007
    Assignee: General Electric Company
    Inventors: Cyril Gerard Beck, John Herbert Wood, Stephen Daniel Graham, Warren Tan King
  • Patent number: 6902633
    Abstract: A nickel-base alloy consists of, by weight, about 15.0 to about 17.0% chromium, about 7.0 to about 10.0% cobalt, about 1.0 to about 2.5% molybdenum, about 2.0 to about 3.2% tungsten, about 0.6 to about 2.5% columbium, less than 1.5% tantalum, about 3.0 to about 3.9% aluminum, about 3.0 to about 3.9% titanium, about 0.005 to about 0.060% zirconium, about 0.005 to about 0.030% boron, about 0.07 to about 0.15% carbon, the balance nickel and impurities. Preferably, columbium is present in an amount greater than tantalum. Tantalum can be essentially absent from the alloy, i.e., only at impurity levels.
    Type: Grant
    Filed: May 9, 2003
    Date of Patent: June 7, 2005
    Assignee: General Electric Company
    Inventors: Warren Tan King, John Herbert Wood, Gangjigang Feng
  • Patent number: 6881439
    Abstract: An aluminiding process that enables the cooling holes of an air-cooled component, such as a hot gas path component of a gas turbine engine, to be machined and then aluminized after all external surface coatings have been deposited. The aluminide coating is deposited using a slurry process capable of forming the aluminide coating on the component without damaging an existing ceramic coating on the component. The process involves applying an activator-free slurry containing aluminum particles that, when the component is sufficiently heated, melt and diffuse into the component surface to form the diffusion aluminide coating.
    Type: Grant
    Filed: December 4, 2002
    Date of Patent: April 19, 2005
    Assignee: General Electric Company
    Inventors: Stephen Daniel Graham, John Herbert Wood, Cyril Gerard Beck, Warren Tan King
  • Publication number: 20040223868
    Abstract: A nickel-base alloy consists of, by weight, about 15.0 to about 17.0% chromium, about 7.0 to about 10.0% cobalt, about 1.0 to about 2.5% molybdenum, about 2.0 to about 3.2% tungsten, about 0.6 to about 2.5% columbium, less than 1.5% tantalum, about 3.0 to about 3.9% aluminum, about 3.0 to about 3.9% titanium, about 0.005 to about 0.060% zirconium, about 0.005 to about 0.030% boron, about 0.07 to about 0.15% carbon, the balance nickel and impurities. Preferably, columbium is present in an amount greater than tantalum. Tantalum can be essentially absent from the alloy, i.e., only at impurity levels.
    Type: Application
    Filed: May 9, 2003
    Publication date: November 11, 2004
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Warren Tan King, John Herbert Wood, Ganjiang Feng
  • Publication number: 20040109948
    Abstract: An aluminiding process that enables the cooling holes of an air-cooled component, such as a hot gas path component of a gas turbine engine, to be machined and then aluminized after all external surface coatings have been deposited. The aluminide coating is deposited using a slurry process capable of forming the aluminide coating on the component without damaging an existing ceramic coating on the component. The process involves applying an activator-free slurry containing aluminum particles that, when the component is sufficiently heated, melt and diffuse into the component surface to form the diffusion aluminide coating.
    Type: Application
    Filed: December 4, 2002
    Publication date: June 10, 2004
    Applicant: General Electric Company
    Inventors: Stephen Daniel Graham, John Herbert Wood, Cyril Gerard Beck, Warren Tan King
  • Patent number: 6096141
    Abstract: Carbide-forming elements are added to nickel-based superalloys so as to minimize grain defects, such as freckle and stray grain defects. More specifically, carbide-forming elements that form from the liquid in the mushy zone of the solidification front of single crystal (SC) and directionally solidified (DS) nickel-based superalloys are added so as to reduce the formation of freckle and stray grain defects in such alloys. A preferred nickel-based superalloy includes, by weight, between about 6.00%-9.25% tantalum, 4.75%-6.50% tungsten, at least about 2.75% rhenium, between about 5.00% to about 7.00% aluminum, at least about 0.10% hafnium and carbon in an amount sufficient (typically between about 0.10-0.15% by weight) to form carbides with other constituents to reduce significantly freckle formation in the mushy zone of the superalloy during casting.
    Type: Grant
    Filed: August 3, 1998
    Date of Patent: August 1, 2000
    Assignee: General Electric Co.
    Inventors: Warren Tan King, Tresa M. Pollock, Christine Louise Zemsky, Wendy Howard Murphy