Patents by Inventor Warren Zemlak

Warren Zemlak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240133282
    Abstract: Systems and methods to pump fracturing fluid into a wellhead may include a gas turbine engine including a compressor turbine shaft connected to a compressor, and a power turbine output shaft connected to a power turbine. The compressor turbine shaft and the power turbine output shaft may be rotatable at different rotational speeds. The systems may also include a transmission including a transmission input shaft connected to the power turbine output shaft and a transmission output shaft connected to a hydraulic fracturing pump. The systems may also include a fracturing unit controller configured to control one or more of the rotational speeds of the compressor turbine shaft, the power turbine output shaft, or the transmission output shaft based at least in part on target signals and fluid flow signals indicative of one or more of pressure or flow rate associated with fracturing fluid pumped into the wellhead.
    Type: Application
    Filed: January 2, 2024
    Publication date: April 25, 2024
    Applicant: BJ Energy Solutions, LLC
    Inventors: Tony Yeung, Ricardo Rodriguez-Ramon, Diankui Fu, Warren Zemlak, Caleb Barclay
  • Patent number: 11898429
    Abstract: Systems and methods to pump fracturing fluid into a wellhead may include a gas turbine engine including a compressor turbine shaft connected to a compressor, and a power turbine output shaft connected to a power turbine. The compressor turbine shaft and the power turbine output shaft may be rotatable at different rotational speeds. The systems may also include a transmission including a transmission input shaft connected to the power turbine output shaft and a transmission output shaft connected to a hydraulic fracturing pump. The systems may also include a fracturing unit controller configured to control one or more of the rotational speeds of the compressor turbine shaft, the power turbine output shaft, or the transmission output shaft based at least in part on target signals and fluid flow signals indicative of one or more of pressure or flow rate associated with fracturing fluid pumped into the wellhead.
    Type: Grant
    Filed: April 24, 2023
    Date of Patent: February 13, 2024
    Assignee: BJ Energy Solutions, LLC
    Inventors: Tony Yeung, Ricardo Rodriguez-Ramon, Diankui Fu, Warren Zemlak, Caleb Barclay
  • Patent number: 11852001
    Abstract: Embodiments of a system, controller, and method for operating a plurality of pumps for a turbine driven fracturing pump system used in hydraulic fracturing are disclosed. In an embodiment, a method of operating a plurality of pumps associated with a hydraulic fracturing system includes receiving a demand Hydraulic Horse Power (HHP) signal. The demand HHP signal may include the Horse Power (HP) required for the hydraulic fracturing system to operate and may include consideration for frictional and other losses. The method further includes operating available pump units at a percentage of rating below Maximum Continuous Power (MCP) level, based at least in part on the demand HHP signal. Furthermore, the method may include receiving a signal for loss of power from one or more pump units. The method further includes operating one or more units at MCP level and operating one or more pump units at Maximum Intermittent Power (MIP) level to meet the demand HHP signal.
    Type: Grant
    Filed: February 13, 2023
    Date of Patent: December 26, 2023
    Assignee: BJ Energy Solutions, LLC
    Inventors: Tony Yeung, Ricardo Rodriguez-Ramon, Diankui Fu, Warren Zemlak, Samir Nath Seth, Joseph Foster
  • Publication number: 20230296050
    Abstract: An embodiment of a pumping unit includes a gas turbine engine, an enclosure housing the engine, an exhaust assembly connected to the engine, an air intake duct connected to the engine, and an air treatment system connected to the air intake duct. The air treatment system including one or more inlet pre-cleaners configured to eject debris. Each of the inlet pre-cleaners having a cylindrical tubular portion configured to channel air toward the air intake duct. In addition, the pumping unit includes a gearbox operatively coupled to the engine and a drive shaft having a first end operatively coupled to the gearbox. Further, the pumping unit includes a pump comprising an input shaft operatively coupled to a second end of the drive shaft, wherein the engine, the gearbox, the drive shaft, and the pump are disposed along a longitudinal axis of the pumping unit.
    Type: Application
    Filed: April 5, 2023
    Publication date: September 21, 2023
    Inventors: Tony Yeung, Ricardo Rodriguez-Ramon, Diankui Fu, Heber Martinez-Barron, Guillermo Rodriguez, Samir Nath Seth, Joseph Foster, Warren Zemlak, Nicholas Tew
  • Publication number: 20230265751
    Abstract: Systems and methods to pump fracturing fluid into a wellhead may include a gas turbine engine including a compressor turbine shaft connected to a compressor, and a power turbine output shaft connected to a power turbine. The compressor turbine shaft and the power turbine output shaft may be rotatable at different rotational speeds. The systems may also include a transmission including a transmission input shaft connected to the power turbine output shaft and a transmission output shaft connected to a hydraulic fracturing pump. The systems may also include a fracturing unit controller configured to control one or more of the rotational speeds of the compressor turbine shaft, the power turbine output shaft, or the transmission output shaft based at least in part on target signals and fluid flow signals indicative of one or more of pressure or flow rate associated with fracturing fluid pumped into the wellhead.
    Type: Application
    Filed: April 24, 2023
    Publication date: August 24, 2023
    Inventors: Tony Yeung, Ricardo Rodriguez-Ramon, Diankui Fu, Warren Zemlak, Caleb Barclay
  • Patent number: 11732565
    Abstract: Systems and methods to pump fracturing fluid into a wellhead may include a gas turbine engine including a compressor turbine shaft connected to a compressor, and a power turbine output shaft connected to a power turbine. The compressor turbine shaft and the power turbine output shaft may be rotatable at different rotational speeds. The systems may also include a transmission including a transmission input shaft connected to the power turbine output shaft and a transmission output shaft connected to a hydraulic fracturing pump. The systems may also include a fracturing unit controller configured to control one or more of the rotational speeds of the compressor turbine shaft, the power turbine output shaft, or the transmission output shaft based at least in part on target signals and fluid flow signals indicative of one or more of pressure or flow rate associated with fracturing fluid pumped into the wellhead.
    Type: Grant
    Filed: December 12, 2022
    Date of Patent: August 22, 2023
    Assignee: BJ Energy Solutions, LLC
    Inventors: Tony Yeung, Ricardo Rodriguez-Ramon, Diankui Fu, Warren Zemlak, Caleb Barclay
  • Publication number: 20230184074
    Abstract: Embodiments of a system, controller, and method for operating a plurality of pumps for a turbine driven fracturing pump system used in hydraulic fracturing are disclosed. In an embodiment, a method of operating a plurality of pumps associated with a hydraulic fracturing system includes receiving a demand Hydraulic Horse Power (HHP) signal. The demand HHP signal may include the Horse Power (HP) required for the hydraulic fracturing system to operate and may include consideration for frictional and other losses. The method further includes operating available pump units at a percentage of rating below Maximum Continuous Power (MCP) level, based at least in part on the demand HHP signal. Furthermore, the method may include receiving a signal for loss of power from one or more pump units. The method further includes operating one or more units at MCP level and operating one or more pump units at Maximum Intermittent Power (MIP) level to meet the demand HHP signal.
    Type: Application
    Filed: February 13, 2023
    Publication date: June 15, 2023
    Inventors: Tony Yeung, Ricardo Rodriguez-Ramon, Diankui Fu, Warren Zemlak, Samir Nath Seth, Joseph Foster
  • Publication number: 20230175373
    Abstract: A system and method for operating a fleet of pumps for a turbine driven fracturing pump system used in hydraulic fracturing is disclosed. In an embodiment, a method of operating a fleet of pumps associated with a hydraulic fracturing system includes receiving a demand Hydraulic Horse Power (HHP) signal. The demand HHP signal may include the Horse Power (HP) required for the hydraulic fracturing system to operate and may include consideration for frictional and other losses. The method further includes operating all available pump units at a percentage of rating below Maximum Continuous Power (MCP) level, based at least in part on the demand HHP signal. Furthermore, the method may include receiving a signal for loss of power from one or more pump units. The method further includes operating one or more units at MCP level and operating one or more units at Maximum Intermittent Power (MIP) level to meet the demand HHP signal.
    Type: Application
    Filed: February 1, 2023
    Publication date: June 8, 2023
    Inventors: Tony Yeung, Ricardo Rodriguez-Ramon, Diankui Fu, Warren Zemlak, Samir Nath Seth, Joseph Foster
  • Patent number: 11639655
    Abstract: Systems and methods to pump fracturing fluid into a wellhead may include a gas turbine engine including a compressor turbine shaft connected to a compressor, and a power turbine output shaft connected to a power turbine. The compressor turbine shaft and the power turbine output shaft may be rotatable at different rotational speeds. The systems may also include a transmission including a transmission input shaft connected to the power turbine output shaft and a transmission output shaft connected to a hydraulic fracturing pump. The systems may also include a fracturing unit controller configured to control one or more of the rotational speeds of the compressor turbine shaft, the power turbine output shaft, or the transmission output shaft based at least in part on target signals and fluid flow signals indicative of one or more of pressure or flow rate associated with fracturing fluid pumped into the wellhead.
    Type: Grant
    Filed: March 2, 2022
    Date of Patent: May 2, 2023
    Assignee: BJ Energy Solutions, LLC
    Inventors: Tony Yeung, Ricardo Rodriguez-Ramon, Diankui Fu, Warren Zemlak, Caleb Barclay
  • Publication number: 20230121289
    Abstract: Systems and methods to pump fracturing fluid into a wellhead may include a gas turbine engine including a compressor turbine shaft connected to a compressor, and a power turbine output shaft connected to a power turbine. The compressor turbine shaft and the power turbine output shaft may be rotatable at different rotational speeds. The systems may also include a transmission including a transmission input shaft connected to the power turbine output shaft and a transmission output shaft connected to a hydraulic fracturing pump. The systems may also include a fracturing unit controller configured to control one or more of the rotational speeds of the compressor turbine shaft, the power turbine output shaft, or the transmission output shaft based at least in part on target signals and fluid flow signals indicative of one or more of pressure or flow rate associated with fracturing fluid pumped into the wellhead.
    Type: Application
    Filed: December 12, 2022
    Publication date: April 20, 2023
    Applicant: BJ Energy Solutions, LLC
    Inventors: Tony Yeung, Ricardo Rodriguez-Ramon, Diankui Fu, Warren Zemlak, Caleb Barclay
  • Patent number: 11619122
    Abstract: A system and method for operating a fleet of pumps for a turbine driven fracturing pump system used in hydraulic fracturing is disclosed. In an embodiment, a method of operating a fleet of pumps associated with a hydraulic fracturing system includes receiving a demand Hydraulic Horse Power (HHP) signal. The demand HHP signal may include the Horse Power (HP) required for the hydraulic fracturing system to operate and may include consideration for frictional and other losses. The method further includes operating all available pump units at a percentage of rating below Maximum Continuous Power (MCP) level, based at least in part on the demand HHP signal. Furthermore, the method may include receiving a signal for loss of power from one or more pump units. The method further includes operating one or more units at MCP level and operating one or more units at Maximum Intermittent Power (MIP) level to meet the demand HHP signal.
    Type: Grant
    Filed: July 28, 2021
    Date of Patent: April 4, 2023
    Assignee: BJ Energy Solutions, LLC
    Inventors: Tony Yeung, Ricardo Rodriguez-Ramon, Diankui Fu, Warren Zemlak, Samir Nath Seth, Joseph Foster
  • Patent number: 11613980
    Abstract: A system and method for operating a fleet of pumps for a turbine driven fracturing pump system used in hydraulic fracturing is disclosed. In an embodiment, a method of operating a fleet of pumps associated with a hydraulic fracturing system includes receiving a demand Hydraulic Horse Power (HHP) signal. The demand HHP signal may include the Horse Power (HP) required for the hydraulic fracturing system to operate and may include consideration for frictional and other losses. The method further includes operating all available pump units at a percentage of rating below Maximum Continuous Power (MCP) level, based at least in part on the demand HHP signal. Furthermore, the method may include receiving a signal for loss of power from one or more pump units. The method further includes operating one or more units at MCP level and operating one or more units at Maximum Intermittent Power (MIP) level to meet the demand HHP signal.
    Type: Grant
    Filed: July 30, 2021
    Date of Patent: March 28, 2023
    Assignee: BJ Energy Solutions, LLC
    Inventors: Tony Yeung, Ricardo Rodriguez-Ramon, Diankui Fu, Warren Zemlak, Samir Nath Seth, Joseph Foster
  • Patent number: 11608725
    Abstract: A system and method for operating a fleet of pumps for a turbine driven fracturing pump system used in hydraulic fracturing is disclosed. In an embodiment, a method of operating a fleet of pumps associated with a hydraulic fracturing system includes receiving a demand Hydraulic Horse Power (HHP) signal. The demand HHP signal may include the Horse Power (HP) required for the hydraulic fracturing system to operate and may include consideration for frictional and other losses. The method further includes operating all available pump units at a percentage of rating below Maximum Continuous Power (MCP) level, based at least in part on the demand HHP signal. Furthermore, the method may include receiving a signal for loss of power from one or more pump units. The method further includes operating one or more units at MCP level and operating one or more units at Maximum Intermittent Power (MIP) level to meet the demand HHP signal.
    Type: Grant
    Filed: December 11, 2020
    Date of Patent: March 21, 2023
    Assignee: BJ Energy Solutions, LLC
    Inventors: Tony Yeung, Ricardo Rodriguez-Ramon, Diankui Fu, Warren Zemlak, Samir Nath Seth, Joseph Foster
  • Patent number: 11572774
    Abstract: Systems and methods to pump fracturing fluid into a wellhead may include a gas turbine engine including a compressor turbine shaft connected to a compressor, and a power turbine output shaft connected to a power turbine. The compressor turbine shaft and the power turbine output shaft may be rotatable at different rotational speeds. The systems may also include a transmission including a transmission input shaft connected to the power turbine output shaft and a transmission output shaft connected to a hydraulic fracturing pump. The systems may also include a fracturing unit controller configured to control one or more of the rotational speeds of the compressor turbine shaft, the power turbine output shaft, or the transmission output shaft based at least in part on target signals and fluid flow signals indicative of one or more of pressure or flow rate associated with fracturing fluid pumped into the wellhead.
    Type: Grant
    Filed: August 9, 2021
    Date of Patent: February 7, 2023
    Assignee: BJ Energy Solutions, LLC
    Inventors: Tony Yeung, Ricardo Rodriguez-Ramon, Diankui Fu, Warren Zemlak, Caleb Barclay
  • Publication number: 20220389844
    Abstract: A power generation assembly and related methods to enhance power efficiency and reduce greenhouse gas emissions associated with a power-dependent operation, may include a gas turbine engine. The power generation assembly also may include a heat exchanger positioned to receive exhaust gas from the gas turbine engine during operation. The heat exchanger may include an exhaust gas inlet positioned to receive exhaust gas and a liquid inlet positioned to receive liquid. The heat exchanger may be positioned to convert liquid into steam via heat from the exhaust gas. The power generation assembly further may include a steam turbine positioned to receive steam from the heat exchanger and convert energy from the steam into mechanical power. The power generation assembly still further may include an electric power generation device connected to the steam turbine and positioned to convert the mechanical power from the steam turbine into electrical power.
    Type: Application
    Filed: June 7, 2022
    Publication date: December 8, 2022
    Applicant: BJ Energy Solutions, LLC
    Inventors: Warren Zemlak, Diankui Fu, Charlie Leykum
  • Patent number: 11408263
    Abstract: Systems and methods to pump fracturing fluid into a wellhead may include a gas turbine engine including a compressor turbine shaft connected to a compressor, and a power turbine output shaft connected to a power turbine. The compressor turbine shaft and the power turbine output shaft may be rotatable at different rotational speeds. The systems may also include a transmission including a transmission input shaft connected to the power turbine output shaft and a transmission output shaft connected to a hydraulic fracturing pump. The systems may also include a fracturing unit controller configured to control one or more of the rotational speeds of the compressor turbine shaft, the power turbine output shaft, or the transmission output shaft based at least in part on target signals and fluid flow signals indicative of one or more of pressure or flow rate associated with fracturing fluid pumped into the wellhead.
    Type: Grant
    Filed: August 9, 2021
    Date of Patent: August 9, 2022
    Assignee: BJ Energy Solutions, LLC
    Inventors: Tony Yeung, Ricardo Rodriguez-Ramon, Diankui Fu, Warren Zemlak, Caleb Barclay
  • Publication number: 20220186597
    Abstract: Systems and methods to pump fracturing fluid into a wellhead may include a gas turbine engine including a compressor turbine shaft connected to a compressor, and a power turbine output shaft connected to a power turbine. The compressor turbine shaft and the power turbine output shaft may be rotatable at different rotational speeds. The systems may also include a transmission including a transmission input shaft connected to the power turbine output shaft and a transmission output shaft connected to a hydraulic fracturing pump. The systems may also include a fracturing unit controller configured to control one or more of the rotational speeds of the compressor turbine shaft, the power turbine output shaft, or the transmission output shaft based at least in part on target signals and fluid flow signals indicative of one or more of pressure or flow rate associated with fracturing fluid pumped into the wellhead.
    Type: Application
    Filed: March 2, 2022
    Publication date: June 16, 2022
    Applicant: BJ Energy Solutions, LLC
    Inventors: Tony Yeung, Ricardo Rodriguez-Ramon, Diankui Fu, Warren Zemlak, Caleb Barclay
  • Publication number: 20210396122
    Abstract: Systems and methods to pump fracturing fluid into a wellhead may include a gas turbine engine including a compressor turbine shaft connected to a compressor, and a power turbine output shaft connected to a power turbine. The compressor turbine shaft and the power turbine output shaft may be rotatable at different rotational speeds. The systems may also include a transmission including a transmission input shaft connected to the power turbine output shaft and a transmission output shaft connected to a hydraulic fracturing pump. The systems may also include a fracturing unit controller configured to control one or more of the rotational speeds of the compressor turbine shaft, the power turbine output shaft, or the transmission output shaft based at least in part on target signals and fluid flow signals indicative of one or more of pressure or flow rate associated with fracturing fluid pumped into the wellhead.
    Type: Application
    Filed: August 9, 2021
    Publication date: December 23, 2021
    Applicant: BJ Energy Solutions, LLC
    Inventors: Tony Yeung, Ricardo Rodriguez-Ramon, Diankui Fu, Warren Zemlak, Caleb Barclay
  • Publication number: 20210396123
    Abstract: Systems and methods to pump fracturing fluid into a wellhead may include a gas turbine engine including a compressor turbine shaft connected to a compressor, and a power turbine output shaft connected to a power turbine. The compressor turbine shaft and the power turbine output shaft may be rotatable at different rotational speeds. The systems may also include a transmission including a transmission input shaft connected to the power turbine output shaft and a transmission output shaft connected to a hydraulic fracturing pump. The systems may also include a fracturing unit controller configured to control one or more of the rotational speeds of the compressor turbine shaft, the power turbine output shaft, or the transmission output shaft based at least in part on target signals and fluid flow signals indicative of one or more of pressure or flow rate associated with fracturing fluid pumped into the wellhead.
    Type: Application
    Filed: August 9, 2021
    Publication date: December 23, 2021
    Applicant: BJ Energy Solutions, LLC
    Inventors: Tony Yeung, Ricardo Rodriguez-Ramon, Diankui Fu, Warren Zemlak, Caleb Barclay
  • Publication number: 20210355801
    Abstract: A system and method for operating a fleet of pumps for a turbine driven fracturing pump system used in hydraulic fracturing is disclosed. In an embodiment, a method of operating a fleet of pumps associated with a hydraulic fracturing system includes receiving a demand Hydraulic Horse Power (HHP) signal. The demand HHP signal may include the Horse Power (HP) required for the hydraulic fracturing system to operate and may include consideration for frictional and other losses. The method further includes operating all available pump units at a percentage of rating below Maximum Continuous Power (MCP) level, based at least in part on the demand HHP signal. Furthermore, the method may include receiving a signal for loss of power from one or more pump units. The method further includes operating one or more units at MCP level and operating one or more units at Maximum Intermittent Power (MIP) level to meet the demand HHP signal.
    Type: Application
    Filed: July 28, 2021
    Publication date: November 18, 2021
    Applicant: BJ Energy Solutions, LLC
    Inventors: Tony Yeung, Ricardo Rodriguez-Ramon, Diankui Fu, Warren Zemlak, Samir Nath Seth, Joseph Foster