Patents by Inventor Wassana Apichatachutapan

Wassana Apichatachutapan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8883914
    Abstract: A resin composition includes a compound having at least two reactive hydrogen atoms and a polyurethane encapsulated particle including a core particle and a polyurethane layer disposed about the core particle. The resin composition may be used in an article and in a method of making the article. The article includes the reaction product of the resin composition and an isocyanate that are reacted in the presence of the polyurethane encapsulated particle. The method of making the article includes providing the core particle in a vessel. The method also includes introducing and combining a polyol component and an isocyanate component to encapsulate the core particle. The method further includes introducing and combining the resin composition and the isocyanate, in the presence of the polyurethane encapsulated particle, to form the article.
    Type: Grant
    Filed: February 13, 2006
    Date of Patent: November 11, 2014
    Assignee: BASF Corporation
    Inventors: Wassana Apichatachutapan, Donald C. Mente, Suzanne Dakin, Steven E. Wujcik, Theodore M. Smiecinski
  • Publication number: 20070191538
    Abstract: A resin composition includes a compound having at least two reactive hydrogen atoms and a polyurethane encapsulated particle including a core particle and a polyurethane layer disposed about the core particle. The resin composition may be used in an article and in a method of making the article. The article includes the reaction product of the resin composition and an isocyanate that are reacted in the presence of the polyurethane encapsulated particle. The method of making the article includes providing the core particle in a vessel. The method also includes introducing and combining a polyol component and an isocyanate component to encapsulate the core particle. The method further includes introducing and combining the resin composition and the isocyanate, in the presence of the polyurethane encapsulated particle, to form the article.
    Type: Application
    Filed: February 13, 2006
    Publication date: August 16, 2007
    Inventors: Wassana Apichatachutapan, Donald Mente, Suzanne Dakin, Steven Wujcik, Theodore Smiecinski
  • Patent number: 7238730
    Abstract: The subject invention provides a viscoelastic polyurethane foam being flame retardant and having a density of greater than two and a half pounds per cubic foot that comprises a reaction product of an isocyanate component, an isocyanate-reactive blend, and a chain extender. The isocyanate-reactive blend includes a first isocyanate-reactive component and a second isocyanate-reactive component. The first isocyanate-reactive component includes at least 60 parts by weight of ethylene oxide (EO) based on 100 parts by weight of the first isocyanate-reactive component and the second isocyanate-reactive component includes at most 30 parts by weight of EO based on 100 parts by weight of the second isocyanate-reactive component. The chain extender is reactive with the isocyanate component and has a backbone chain with from two to eight carbon atoms and is present in an amount of from 5 to 50 parts by weight based on 100 parts by weight of the foam.
    Type: Grant
    Filed: June 26, 2003
    Date of Patent: July 3, 2007
    Assignee: BASF Corporation
    Inventors: Wassana Apichatachutapan, Raymond Neff, James Mullins, Theodore M. Smiecinski, Thomas B. Lee
  • Publication number: 20040266897
    Abstract: The subject invention provides a viscoelastic polyurethane foam being flame retardant and having a density of greater than two and a half pounds per cubic foot that comprises a reaction product of an isocyanate component, an isocyanate-reactive blend, and a chain extender. The isocyanate-reactive blend includes a first isocyanate-reactive component and a second isocyanate-reactive component. The first isocyanate-reactive component includes at least 60 parts by weight of ethylene oxide (EO) based on 100 parts by weight of the first isocyanate-reactive component and the second isocyanate-reactive component includes at most 30 parts by weight of EO based on 100 parts by weight of the second isocyanate-reactive component. The chain extender is reactive with the isocyanate component and has a backbone chain with from two to eight carbon atoms and is present in an amount of from 5 to 50 parts by weight based on 100 parts by weight of the foam.
    Type: Application
    Filed: June 26, 2003
    Publication date: December 30, 2004
    Inventors: Wassana Apichatachutapan, Raymond Neff, James Mullins, Theodore M. Smiecinski, Thomas B. Lee
  • Patent number: 6797736
    Abstract: The subject invention provides a method of forming high resilience slabstock polyurethane foam having random cell structures to produce latex-like feel and characteristics. The method includes the first step of providing an isocyanate-reactive component and an isocyanate component to react with the isocyanate-reactive component. A first nucleation gas is provided under low pressure and is added into at least one of the isocyanate-reactive component and the isocyanate component to produce a first cell structure in the polyurethane foam. A second nucleation gas is provided under low pressure, being different than the first nucleation gas, and is added into at least one of the isocyanate-reactive component and the isocyanate component to produce a second cell structure in the polyurethane foam that is different than the first cell structure.
    Type: Grant
    Filed: March 19, 2003
    Date of Patent: September 28, 2004
    Assignee: BASF Corporation
    Inventors: Theodore M. Smiecinski, Wassana Apichatachutapan, Todd J. Green, Thomas R. Benevenuti
  • Publication number: 20040186192
    Abstract: The subject invention provides a method of forming high resilience slabstock polyurethane foam having random cell structures to produce latex-like feel and characteristics. The method includes the first step of providing an isocyanate-reactive component and an isocyanate component to react with the isocyanate-reactive component. A first nucleation gas is provided under low pressure and is added into at least one of the isocyanate-reactive component and the isocyanate component to produce a first cell structure in the polyurethane foam. A second nucleation gas is provided under low pressure, being different than the first nucleation gas, and is added into at least one of the isocyanate-reactive component and the isocyanate component to produce a second cell structure in the polyurethane foam that is different than the first cell structure.
    Type: Application
    Filed: March 19, 2003
    Publication date: September 23, 2004
    Applicant: BASF Corporation
    Inventors: Theodore M. Smiecinski, Wassana Apichatachutapan, Todd J. Green, Thomas R. Benevenuti
  • Patent number: 6784218
    Abstract: The subject invention provides a method of forming high resilience slabstock polyurethane foam having random cell structures and displaying latex-like feel and characteristics with superior physical performance to latex foam, including complying with California Technical Bulletin 117 and British Standard 5852:Crib 5 flame tests. The method includes the first step of providing an isocyanate-reactive component and an isocyanate component substantially free of toluene diisocyanate comprising diphenylmethane-2,4′-diisocyanate present in an amount of from 15 parts by weight to 55 parts by weight based on 100 parts by weight of the isocyanate component and diphenylmethane-4,4′-diisocyanate present in an amount from 45 parts by weight to 85 parts by weight based on 100 parts by weight of the isocyanate component to react with the isocyanate-reactive component.
    Type: Grant
    Filed: March 19, 2003
    Date of Patent: August 31, 2004
    Assignee: BASF Corporation
    Inventors: Wassana Apichatachutapan, Todd J. Green, James A. Mullins, Theodore M. Smiecinski