Patents by Inventor Wayne Charles Hasz

Wayne Charles Hasz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080023179
    Abstract: A heat transfer device includes a plurality of heat transfer walls configured to separate a first fluid and a second fluid. A heat transfer enhancing system is provided to one or more heat transfer walls. The heat transfer enhancing system includes a plurality of micro turbulating particles bonded to the one or more heat transfer walls using a binding medium.
    Type: Application
    Filed: July 27, 2006
    Publication date: January 31, 2008
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: RONALD SCOTT BUNKER, WAYNE CHARLES HASZ
  • Patent number: 7029721
    Abstract: A method for applying a bond coat on a metal-based substrate is described. A slurry which contains braze material and a volatile component is deposited on the substrate. The slurry can also include bond coat material. Alternatively, the bond coat material can be applied afterward, in solid form or in the form of a second slurry. The slurry and bond coat are then dried and fused to the substrate. A repair technique using this slurry is also described, along with related compositions and articles.
    Type: Grant
    Filed: December 23, 2003
    Date of Patent: April 18, 2006
    Assignee: General Electric Company
    Inventors: Wayne Charles Hasz, D Sangeeta
  • Patent number: 6921582
    Abstract: An article is described, which includes a metal-based substrate and an oxidation-resistant coating bonded to the substrate by a bonding agent, such as a braze material The oxidation-resistant coating material is often an aluminide- or MCrAlX-type coating, and can be one which contains relatively high amounts of aluminum. The coating is often very smooth, for maximum aerodynamic efficiency. The oxidation-resistant coating can be applied and bonded to the substrate by a variety of methods, using slurries, braze tapes, or metal foils. Coating repair methods are also described.
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: July 26, 2005
    Assignee: General Electric Company
    Inventor: Wayne Charles Hasz
  • Patent number: 6921014
    Abstract: A method for forming a channel within a coated, metal-based substrate is described. In one technique, a channel-forming material is first deposited on the substrate, followed by the deposition of a bonding agent, such as a braze. One or more coatings can then be applied over the substrate. In one embodiment, the channel is formed when the channel-forming material is subsequently removed. In another embodiment, the channel is formed due to the lack of adhesion between particular channel-forming materials and the overlying bonding agent. Related articles are also described, e.g., gas turbine components which include protective coatings and a pattern of cooling channels.
    Type: Grant
    Filed: May 7, 2002
    Date of Patent: July 26, 2005
    Assignee: General Electric Company
    Inventors: Wayne Charles Hasz, Venkat S. Venkataramani, Ching-Pang Lee
  • Patent number: 6910620
    Abstract: A method of providing turbulation on the inner surface of a passage hole (e.g., a turbine cooling hole) is described. The turbulation is first applied to a substrate which can eventually be inserted into the passage hole. The substrate is often a bar or tube, formed of a sacrificial material. After the turbulation is applied to the substrate, the substrate is inserted into the passage hole. The turbulation material is then fused to the inner surface, using a conventional heating technique. The sacrificial substrate can then be removed from the hole by various techniques. Related articles are also described.
    Type: Grant
    Filed: October 15, 2002
    Date of Patent: June 28, 2005
    Assignee: General Electric Company
    Inventors: Wayne Charles Hasz, Nesim Abuaf, Robert Alan Johnson, Ching-Pang Lee
  • Patent number: 6846575
    Abstract: An article includes turbulation material bonded to a surface of a substrate via a bonding agent, such as a braze alloy. In an embodiment, the turbulation material includes a particulate phase of discrete metal alloy particles having an average particle size within a range of about 125 microns to about 4000 microns. Other embodiments include methods for applying turbulation and articles for forming turbulation.
    Type: Grant
    Filed: June 5, 2003
    Date of Patent: January 25, 2005
    Assignee: General Electric Company
    Inventors: Wayne Charles Hasz, Robert Alan Johnson, Ching-Pang Lee, Mark Gerard Rettig, Nesim Abuaf, John Howard Starkweather
  • Patent number: 6827254
    Abstract: A turbine engine component includes a substrate and a wear coating on the substrate. The wear coating includes wear-resistant particles in a matrix phase, the wear-resistant particles being formed of chrome carbide or a cobalt alloy. Methods for forming a turbine engine component are also disclosed.
    Type: Grant
    Filed: June 25, 2002
    Date of Patent: December 7, 2004
    Assignee: General Electric Company
    Inventors: Wayne Charles Hasz, David Edwin Budinger
  • Patent number: 6786982
    Abstract: A casting includes a heat transfer surface having a plurality of cavities. The plurality of cavities include a density of at least about 25 cavities per square centimeter to about 1,100 cavities per square centimeter resulting in increased surface area and therefore enhanced heat transfer capability. Also disclosed is a mold for forming a pattern for molding the casting. The mold includes a surface defining a portion of a chamber to which are attached a plurality of particles having an average particle size in a range of about 300 microns to about 2,000 microns.
    Type: Grant
    Filed: October 24, 2002
    Date of Patent: September 7, 2004
    Assignee: General Electric Company
    Inventors: Ching Pang Lee, Wayne Charles Hasz, Nesim Abuaf, Robert Alan Johnson
  • Publication number: 20040142112
    Abstract: A method for applying a bond coat on a metal-based substrate is described. A slurry which contains braze material and a volatile component is deposited on the substrate. The slurry can also include bond coat material. Alternatively, the bond coat material can be applied afterward, in solid form or in the form of a second slurry. The slurry and bond coat are then dried and fused to the substrate. A repair technique using this slurry is also described, along with related compositions and articles.
    Type: Application
    Filed: December 23, 2003
    Publication date: July 22, 2004
    Inventors: Wayne Charles Hasz, D Sangeeta
  • Publication number: 20040131877
    Abstract: An article includes turbulation material bonded to a surface of a substrate via a bonding agent, such as a braze alloy. In an embodiment, the turbulation material includes a particulate phase of discrete metal alloy particles having an average particle size within a range of about 125 microns to about 4000 microns. Other embodiments include methods for applying turbulation and articles for forming turbulation.
    Type: Application
    Filed: June 5, 2003
    Publication date: July 8, 2004
    Inventors: Wayne Charles Hasz, Robert Alan Johnson, Ching-Pang Lee, Mark Gerard Rettig, Nesim Abuaf, John Howard Starkweather
  • Publication number: 20040124231
    Abstract: A method for coating a substrate is presented. The method comprises providing a substrate; attaching a preform to the substrate, the preform comprising braze alloy and wear-resistant particles; and bonding the preform to the substrate to form a wear-resistant coating.
    Type: Application
    Filed: September 17, 2003
    Publication date: July 1, 2004
    Inventors: Wayne Charles Hasz, David Edwin Budinger, Michael Beverley, D. Keith Patrick, Dennis Michael Gray
  • Publication number: 20040072014
    Abstract: A method of providing turbulation on the inner surface of a passage hole (e.g., a turbine cooling hole) is described. The turbulation is first applied to a substrate which can eventually be inserted into the passage hole. The substrate is often a bar or tube, formed of a sacrificial material. After the turbulation is applied to the substrate, the substrate is inserted into the passage hole. The turbulation material is then fused to the inner surface, using a conventional heating technique. The sacrificial substrate can then be removed from the hole by various techniques. Related articles are also described.
    Type: Application
    Filed: October 15, 2002
    Publication date: April 15, 2004
    Applicant: General Electric Company
    Inventors: Wayne Charles Hasz, Nesim Abuaf, Robert Alan Johnson, Ching-Pang Lee
  • Publication number: 20030209589
    Abstract: A method for forming a channel within a coated, metal-based substrate is described. In one technique, a channel-forming material is first deposited on the substrate, followed by the deposition of a bonding agent, such as a braze. One or more coatings can then be applied over the substrate. In one embodiment, the channel is formed when the channel-forming material is subsequently removed. In another embodiment, the channel is formed due to the lack of adhesion between particular channel-forming materials and the overlying bonding agent. Related articles are also described, e.g., gas turbine components which include protective coatings and a pattern of cooling channels.
    Type: Application
    Filed: May 7, 2002
    Publication date: November 13, 2003
    Applicant: General Electric Company
    Inventors: Wayne Charles Hasz, Venkat S. Venkataramani, Ching-Pang Lee
  • Patent number: 6637643
    Abstract: A method for applying at least one bond coating on a surface of a metal-based substrate is described. A foil of the bond coating material is first attached to the substrate surface and then fused thereto, e.g., by brazing. The foil is often initially prepared by thermally spraying the bond coating material onto a removable support sheet, and then detaching the support sheet. Optionally, the foil may also include a thermal barrier coating applied over the bond coating. The substrate can be a turbine engine component.
    Type: Grant
    Filed: February 4, 2002
    Date of Patent: October 28, 2003
    Assignee: General Electric Company
    Inventors: Wayne Charles Hasz, Marcus Preston Borom, Warren Arthur Nelson, James Edward Viggiani, John Zanneti
  • Patent number: 6610420
    Abstract: A method for forming a thermal barrier coating system on a turbine engine component includes forming a bondcoat on the turbine engine component and depositing a thermal barrier coating so as to overlie the bondcoat. The bondcoat is formed by thermally co-spraying first and second distinct alloy powders on the turbine engine component forming an oxidation-resistant region, and thermally spraying a third alloy powder on the oxidation-resistant region to form a bonding region.
    Type: Grant
    Filed: October 30, 2001
    Date of Patent: August 26, 2003
    Assignee: General Electric Company
    Inventors: Anthony Mark Thompson, Wayne Charles Hasz
  • Patent number: 6598781
    Abstract: An article includes turbulation material bonded to a surface of a substrate via a bonding agent, such as a braze alloy. In an embodiment, the turbulation material includes a particulate phase of discrete metal alloy particles having an average particle size within a range of about 125 microns to about 4000 microns. Other embodiments include methods for applying turbulation and articles for forming turbulation.
    Type: Grant
    Filed: June 24, 2002
    Date of Patent: July 29, 2003
    Assignee: General Electric Company
    Inventors: Wayne Charles Hasz, Robert Alan Johnson, Ching-Pang Lee, Mark Gerard Rettig, Nesim Abuaf, John Howard Starkweather
  • Patent number: 6589600
    Abstract: A turbine engine component is provided that has a surface that contains a plurality of depressions that are effective to increase the surface area of the component. The depressions are generally concave in contour and improve the heat transfer characteristics of the component. Methods for forming the turbine engine components are also disclosed.
    Type: Grant
    Filed: June 30, 1999
    Date of Patent: July 8, 2003
    Assignee: General Electric Company
    Inventors: Wayne Charles Hasz, Nesim Abuaf, Robert Alan Johnson, Ching-Pang Lee
  • Patent number: 6546730
    Abstract: A combustor liner is provided on its backside cooling surface with a braze alloy coating and cooling enhancement material, preferably metallic particles to enhance the heat transfer between the liner and the cooling medium. The surface area of the backside coated area is increased substantially by the coating and particles in relation to the uncoated surface areas. Consequently, the life of the liner is extended.
    Type: Grant
    Filed: June 12, 2002
    Date of Patent: April 15, 2003
    Assignee: General Electric Company
    Inventors: Robert Alan Johnson, Anthony Joseph Loprinzo, Ching-Pang Lee, Nesim Abuaf, Wayne Charles Hasz, Harmon Lindsay Morton
  • Publication number: 20030062401
    Abstract: A method for applying a wear coating on a surface of a substrate is described. A foil of the wear coating is first attached to the substrate surface, and then fused to the surface, e.g., by brazing. The wear coating may be formed from a carbide-type material. The substrate is very often a superalloy material, e.g., a component of a turbine engine. A method for repairing a worn or damaged wear coating applied over a substrate is also described, along with related articles of manufacture.
    Type: Application
    Filed: February 23, 2001
    Publication date: April 3, 2003
    Inventors: Wayne Charles Hasz, Anthony Mark Thompson, Marcus Preston Borom
  • Patent number: 6541075
    Abstract: An article includes a substrate and an adhesion layer overlying the substrate. The adhesion layer includes a first phase including particles, and a second phase including braze alloy that bonds the particles to the substrate. The article further includes a ceramic layer overlying the adhesion layer. In one embodiment, the ceramic layer is a thermal barrier coating (TBC), formed of stabilized zirconia (ZrO2).
    Type: Grant
    Filed: February 12, 2001
    Date of Patent: April 1, 2003
    Assignee: General Electric Company
    Inventors: Wayne Charles Hasz, Jeffrey Allen Conner