Patents by Inventor Wayne Coco

Wayne Coco has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230235319
    Abstract: Disclosed are new nucleic acid base-editing systems comprising fusion proteins comprising a) an RNA-programmable nucleic acid recognition module or other suitable nucleic acid recognition module, b) a light inducible reactive oxygen generator. Further disclosed are methods and kits to modify or mutagenize a target DNA region in prokaryotic or eukaryotic cells or organisms.
    Type: Application
    Filed: June 9, 2021
    Publication date: July 27, 2023
    Inventors: Philipp Knyphausen, Brian Vogler, Wayne Coco, Andre Cohnen, Florian Richter, Damian Curtis
  • Publication number: 20230212532
    Abstract: The present invention relates to novel recombinant Bacillus megaterium cytochrome P450-monooxygenase (P450-BM3) variants for the C19 hydroxylation of steroids and derivatives thereof or for improved BM3 protein expression. In particular, the present invention also relates to methods and processes using P450-BM3 variants for the production of estrone and estradiol.
    Type: Application
    Filed: February 1, 2021
    Publication date: July 6, 2023
    Inventors: Oliver KENSCH, Kai THEDE, Petra HELFRICH, Lilly SKALDEN, Ludwig ZORN, Sabine TRENNER, Jens BURMEISTER, Nils KRETSCHMANN, Florian RICHTER, Wayne COCO, Marcus LUDWIG, Dalia BULUT, Frank BERENDES, Jens PILLING, Jakob WAGNER, Ruben LINNHOFF
  • Patent number: 11578323
    Abstract: Aspects of this invention inter alia relate to novel systems for targeting, editing or manipulating DNA in a cell, comprising one or more heterologous vector(s) encoding a SluCas9 nuclease from Staphylococcus lugdunensis or variants thereof, and one or more guide RNAs (gRNAs), or a SluCas9 nuclease or variant thereof and one or more gRNAs.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: February 14, 2023
    Assignees: BAYER HEALTHCARE LLC, CRISPR THERAPEUTICS AG
    Inventors: Andre Cohnen, Moritz Schmidt, Wayne Coco, Ashish Gupta, Jan Tebbe, Cindy Schulenburg, Christian Pitzler, Michael Biag Gamalinda, Sabine Jach, Florian Richter, Anup Arumughan, Corinna Saalwächter
  • Publication number: 20220220457
    Abstract: The present invention concerns proteins having improved omega-transaminase (?-TA) activity, nucleic acid molecules encoding respective proteins having improved ?-TA activity and methods for stereo selective synthesis of chiral amines and amino acids or increasing of chiral amines isomers in enantiomer mixtures.
    Type: Application
    Filed: July 30, 2019
    Publication date: July 14, 2022
    Inventors: Nina BOHLKE, Wayne COCO, Mark James FORD, Saskia FUNK, Ulrike KELLER, Oliver KENSCH, Ksenia NIESEL, Nilkolaus PAWLOWSKI, Moritz SCHON, Cindy SCHULENBURG, Andreas Karl STEIB, Christina THIES
  • Patent number: 11371056
    Abstract: In the present invention, HPPD polypeptides and plants containing them showing a full tolerance against one or more HPPD inhibitor herbicides belonging to various chemical classes are described. A set of mutant HPPD polypeptides have been designed which have either no or only a significantly reduced affinity to HPPD inhibitor herbicides and, at the same time, the rate of dissociation of the HPPD inhibitors of the mutant HPPD polypeptide is increased to such an extent that the HPPD inhibitors no longer act as slow-binding or slow, tight-binding inhibitors but, instead of this, have become fully reversible inhibitors. In particular, isolated polynucleotides encoding mutant HPPD polypeptides conferring tolerance to HPPD inhibitor herbicides belonging to various chemical classes are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: June 28, 2022
    Assignee: BASF Agricultural Solutions Seed US LLC
    Inventors: Marc Linka, Fabien Poree, Bernd Laber, Gudrun Lange, Ernst Weber, Michael Strerath, Sandra Geske, Heike Balven-Ross, Nina Wobst, Wayne Coco, Nikolaus Pawlowski, Jan Tebbe, Christina Thies, Manuel Dubald
  • Publication number: 20220145274
    Abstract: Described herein are novel systems for targeting, editing or manipulating DNA in a cell, using novel M-SmallCas9 nucleases and variants thereof. The M-SmallCas9 nucleases are derived from wildtype or parental small type II CRISPR Cas9 endonucleases, and display improved fidelity compared to parental type II CRISPR Cas9 enzymes in combination with a simple PAM sequences and are small endonuclease size.
    Type: Application
    Filed: March 12, 2020
    Publication date: May 12, 2022
    Inventors: Moritz Schmidt, Philipp Knyphausen, Christina Galonska, Wayne Coco, Andre Cohnen
  • Patent number: 11180770
    Abstract: In the present invention, HPPD polypeptides and plants containing them showing a full tolerance against one or more HPPD inhibitor herbicides belonging to various chemical classes are described. A set of mutant HPPD polypeptides have been designed which have either no or only a significantly reduced affinity to HPPD inhibitor herbicides and, at the same time, the rate of dissociation of the HPPD inhibitors of the mutant HPPD polypeptide is increased to such an extent that the HPPD inhibitors no longer act as slow-binding or slow, tight-binding inhibitors but, instead of this, have become fully reversible inhibitors. In particular, isolated polynucleotides encoding mutant HPPD polypeptides conferring tolerance to HPPD inhibitor herbicides belonging to various chemical classes are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: November 23, 2021
    Assignee: BASF Agricultural Solutions Seed US LLC
    Inventors: Marc Linka, Fabien Poree, Bernd Laber, Gudrun Lange, Christina Thies, Ernst Weber, Michael Strerath, Sandra Geske, Heike Balven-Ross, Nina Wobst, Wayne Coco, Nikolaus Pawlowski, Jan Tebbe, Manuel Dubald
  • Publication number: 20210054353
    Abstract: Aspects of this invention, inter alia, relate to novel systems for targeting, editing or manipulating DNA in a cell, using novel synthetic RNA-guided nucleases (sRGNs). The sRGNs are derived from wildtype or parental small type II CRISPR Cas9 endonucleases.
    Type: Application
    Filed: March 19, 2019
    Publication date: February 25, 2021
    Inventors: Andre COHNEN, Moritz SCHMIDT, Wayne COCO, Michael Biag GAMALINDA, Ashish GUPTA, Christian PITZLER, Florian RICHTER, Jan TEBBE, Christopher CHENG, Ryo TAKEUCHI, Caroline W. REISS
  • Publication number: 20200385720
    Abstract: Aspects of this invention inter alia relate to novel systems for targeting, editing or manipulating DNA in a cell, comprising one or more heterologous vector(s) encoding a SluCas9 nuclease from Staphylococcus lugdunensis or variants thereof, and one or more guide RNAs (gRNAs), or a SluCas9 nuclease or variant thereof and one or more gRNAs.
    Type: Application
    Filed: December 14, 2018
    Publication date: December 10, 2020
    Inventors: Andre COHNEN, Moritz SCHMIDT, Wayne COCO, Ashish GUPTA, Jan TEBBE, Cindy SCHULENBURG, Christian PITZLER, Michael Biag GAMALINDA, Sabine JACH, Florian RICHTER, Anup ARUMUGHAN, Corinna SAALWÄCHTER
  • Publication number: 20200239905
    Abstract: In the present invention, HPPD polypeptides and plants containing them showing a full tolerance against one or more HPPD inhibitor herbicides belonging to various chemical classes are described. A set of mutant HPPD polypeptides have been designed which have either no or only a significantly reduced affinity to HPPD inhibitor herbicides and, at the same time, the rate of dissociation of the HPPD inhibitors of the mutant HPPD polypeptide is increased to such an extent that the HPPD inhibitors no longer act as slow-binding or slow, tight-binding inhibitors but, instead of this, have become fully reversible inhibitors. In particular, isolated polynucleotides encoding mutant HPPD polypeptides conferring tolerance to HPPD inhibitor herbicides belonging to various chemical classes are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed.
    Type: Application
    Filed: March 1, 2018
    Publication date: July 30, 2020
    Applicant: BASF Agricultural Solutions Seed US LLC
    Inventors: Marc Linka, Fabien Poree, Bernd Laber, Gudrun Lange, Ernst Weber, Michael Strerath, Sandra Geske, Heike Balven-Ross, Nina Wobst, Wayne Coco, Nikolaus Pawlowski, Jan Tebbe, Christina Thies, Manuel Dubald
  • Patent number: 10597674
    Abstract: In the present invention, HPPD polypeptides and plants containing them showing a full tolerance against one or more HPPD inhibitor herbicides belonging to various chemical classes are described. A set of mutant HPPD polypeptides have been designed which have either no or only a significantly reduced affinity to HPPD inhibitor herbicides and, at the same time, the rate of dissociation of the HPPD inhibitors of the mutant HPPD polypeptide is increased to such an extent that the HPPD inhibitors no longer act as slow-binding or slow, tight-binding inhibitors but, instead of this, have become fully reversible inhibitors. In particular, isolated polynucleotides encoding mutant HPPD polypeptides conferring tolerance to HPPD inhibitor herbicides belonging to various chemical classes are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: March 24, 2020
    Assignee: BASF Agricultural Solutions Seed, US LLC
    Inventors: Marc Linka, Fabien Poree, Bernd Laber, Gudrun Lange, Jan Tebbe, Wayne Coco, Michael Strerath, Ernst Weber, Nikolaus Pawlowski, Sandra Geske, Heike Balven-Ross, Nina Wobst, Christina Thies, Manuel Dubald
  • Publication number: 20200063155
    Abstract: In the present invention, HPPD polypeptides and plants containing them showing a full tolerance against one or more HPPD inhibitor herbicides belonging to various chemical classes are described. A set of mutant HPPD polypeptides have been designed which have either no or only a significantly reduced affinity to HPPD inhibitor herbicides and, at the same time, the rate of dissociation of the HPPD inhibitors of the mutant HPPD polypeptide is increased to such an extent that the HPPD inhibitors no longer act as slow-binding or slow, tight-binding inhibitors but, instead of this, have become fully reversible inhibitors. In particular, isolated polynucleotides encoding mutant HPPD polypeptides conferring tolerance to HPPD inhibitor herbicides belonging to various chemical classes are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed.
    Type: Application
    Filed: March 1, 2018
    Publication date: February 27, 2020
    Applicant: BASF Agricultural Solutions Seed US LLC
    Inventors: Marc Linka, Fabien Poree, Bernd Laber, Gudrun Lange, Christina Thies, Ernst Weber, Michael Strerath, Sandra Geske, Heike Balven-Ross, Nina Wobst, Wayne Coco, Nikolaus Pawlowski, Jan Tebbe, Manuel Dubald
  • Publication number: 20180208937
    Abstract: In the present invention, HPPD polypeptides and plants containing them showing a full tolerance against one or more HPPD inhibitor herbicides belonging to various chemical classes are described. A set of mutant HPPD polypeptides have been designed which have either no or only a significantly reduced affinity to HPPD inhibitor herbicides and, at the same time, the rate of dissociation of the HPPD inhibitors of the mutant HPPD polypeptide is increased to such an extent that the HPPD inhibitors no longer act as slow-binding or slow, tight-binding inhibitors but, instead of this, have become fully reversible inhibitors. In particular, isolated polynucleotides encoding mutant HPPD polypeptides conferring tolerance to HPPD inhibitor herbicides belonging to various chemical classes are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed.
    Type: Application
    Filed: September 8, 2016
    Publication date: July 26, 2018
    Inventors: Marc Linka, Fabien POREE, Bernd LABER, Gudrun LANGE, Jan TEBBE, Wayne COCO, Michael STRERATH, Ernst WEBER, Nikolaus PAWLOWSKI, Sandra GESKE, Heike BALVEN-ROSS, Nina WOBST, Christina THIES, Manuel DUBALD
  • Publication number: 20100297700
    Abstract: Provided herein are antibodies, antigen binding portions, and derivatives thereof that are capable of binding tumor necrosis factor alpha (TNF?); nucleic acids encoding the antibodies, antigen binding portions, and derivatives thereof, including complementary nucleic acids; vectors; and host cells containing the nucleic acids.
    Type: Application
    Filed: December 24, 2008
    Publication date: November 25, 2010
    Inventors: Christian Votsmeier, Uwe Gritzan, Kornelia Kirchner, Michael Strerath, Kerstin Baral, Ulrich Haupts, Wayne Coco, Susanne Steinig, Andreas Scheidig, Klaus Pellengahr, Simone Brückner, Hanna Plittersdorf, Peter Scholz, Jan Tebbe
  • Publication number: 20080064064
    Abstract: The present invention provides an insertion, deletion and/or substitution mutein of wild-type Trichoderma reesei ?-mannanase having enhanced thermostability, proteolytic stability, specific activity and/or stability at low pH, a nucleic acid molecule encoding said mannanase mutein, a composition comprising said mannanase mutein; a method for its preparation, and its use for food and feed processing, for coffee extraction and the processing of coffee waste, as a supplement to food and feed, for enzyme aided bleaching of paper pulps, as bleaching and/or desizing agent in textile industry, for oil and gas well stimulation by hydraulic fracturing, as detergent, for removal of biofilms and in delivery systems, or for the processing of renewable resources intended for the production of biological fuels.
    Type: Application
    Filed: July 17, 2007
    Publication date: March 13, 2008
    Applicant: DIREVO BIOTECH AG
    Inventors: Oliver Kensch, Wayne Coco, Andreas Scheidig, Ute Beister, Birgitta Leuthner, Nadine Koch, Markus Rarbach, Ulrich Kettling, Ulrich Haupts
  • Publication number: 20060269538
    Abstract: The present invention provides variants of serine proteases of the S1 class with altered sensitivity to one or more activity-modulating substances. A method for the generation of such proteases is disclosed, comprising the provision of a protease library encoding polynucleotide sequences, expression of the enzymes, screening of the library in the presence of one or several activity-modulating substances, selection of variants with altered sensitivity to one or several activity-modulating substances and isolation of those polynucleotide sequences that encode for the selected variants.
    Type: Application
    Filed: May 26, 2006
    Publication date: November 30, 2006
    Inventors: Andre Koltermann, Ulrich Kettling, Ulrich Haupts, Wayne Coco, Jan Tebbe, Christian Votsmeier, Andreas Scheidig
  • Publication number: 20050175581
    Abstract: The present invention provides method for the treatment of a disease by applying a medicament comprising a protease with a defined specificity is capable to hydrolyze specific peptide bonds within a target substrate related to such disease. The proteases with such a defined specificity can further be used for related therapeutic or diagnostic purposes.
    Type: Application
    Filed: December 22, 2004
    Publication date: August 11, 2005
    Inventors: Ulrich Haupts, Andre Koltermann, Andreas Scheidig, Christian Votsmeier, Ulrich Kettling, Wayne Coco
  • Publication number: 20050032162
    Abstract: The present invention features polypeptides that have at least 90% amino acid identity to wild-type epidermal growth factor, and also have epidermal growth factor biological activity that is greater than the biological activity of wild-type epidermal growth factor.
    Type: Application
    Filed: April 8, 2004
    Publication date: February 10, 2005
    Inventors: Wayne Coco, Philip Pienkos, A. Loomis