Patents by Inventor Wayne E. Jones, Jr.

Wayne E. Jones, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9920220
    Abstract: Embodiments of films and material layers comprising PEDOT. These embodiments are the result of methods that utilize polymerization processes including vapor phase polymerization (VPP) to form the conductive film comprising PEDOT. In one embodiment, the film can result from a method that includes steps for depositing a coating solution onto a substrate, exposing the substrate to a monomer source, and cleaning the substrate after polymerization. The coating solution can comprise an initiating oxidant, which facilitates growth of PEDOT from 3,4 ethylenedioxythiophene (EDOT), as well as a quenching agent that neutralizes acid that results from polymerization.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: March 20, 2018
    Assignee: The Research Foundation of State University of New York
    Inventors: William E. Bernier, Nicholas A. Ravvin, Wayne E. Jones, Jr., Kenneth H. Skorenko
  • Patent number: 9915757
    Abstract: Compositions for increasing the thermal stability of optical absorbers are provided as well as methods of making and using the resulting compositions. The compositions or complexes of the present teachings generally include an optical absorber bound to a metal or a metal oxide through one or more linkers, which contain a metal binding moiety.
    Type: Grant
    Filed: June 24, 2014
    Date of Patent: March 13, 2018
    Assignee: The Research Foundation for the State University of New York
    Inventors: William E. Bernier, Megan Fegley, Bradley Galusha, Francis D. Goroleski, Wayne E. Jones, Jr., Kenneth H. Skorenko
  • Publication number: 20140272342
    Abstract: Embodiments of films and material layers comprising PEDOT. These embodiments are the result of methods that utilize polymerization processes including vapor phase polymerization (VPP) to form the conductive film comprising PEDOT. In one embodiment, the film can result from a method that includes steps for depositing a coating solution onto a substrate, exposing the substrate to a monomer source, and cleaning the subsrate after polymerization. The coating solution can comprise an initiating oxidant, which facilitates growth of PEDOT from 3,4 ethylenedioxythiophene (EDOT), as well as a quenching agent that neutralizes acid that results from polymerization.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: THE RESEARCH FOUNDATION OF STATE UNIVERSITY OF NEW YORK
    Inventors: William E. Bernier, Nicholas A. Ravvin, Wayne E. Jones, JR., Kenneth H. Skorenko
  • Patent number: 8518304
    Abstract: The present invention features additions of nanostructures to interconnect conductor particles to: (1) reduce thermal interface resistance by using thermal interposers that have high thermal conductivity nanostructures at their surfaces; (2) improve the anisotropic conductive adhesive interconnection conductivity with microcircuit contact pads; and (3) allow lower compression forces to be applied during the microcircuit fabrication processes which then results in reduced deflection or circuit damage. When pressure is applied during fabrication to spread and compress anisotropic conductive adhesive and the matrix of interconnect particles and circuit conductors, the nano-structures mesh and compress into a more uniform connection than current technology provides, thereby eliminating voids, moisture and other contaminants, increasing the contact surfaces for better electrical and thermal conduction.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: August 27, 2013
    Assignee: The Research Foundation of State University of New York
    Inventors: Bahgat Sammakia, Wayne E. Jones, Jr., Ganesh Subbarayan
  • Patent number: 7645512
    Abstract: The present invention features additions of nano-structures to interconnect conductor fine particles (spheres) to: (1) reduce thermal interface resistance by using thermal interposers that have high thermal conductivity nano-structures at their surfaces; (2) improve the anisotropic conductive adhesive interconnection conductivity with microcircuit contact pads; and (3) allow lower compression forces to be applied during the microcircuit fabrication processes which then results in reduced deflection or circuit damage. When pressure is applied during fabrication to spread and compress anisotropic conductive adhesive and the matrix of interconnect particles and circuit conductors, the nano-structures mesh and compress into a more uniform connection than current technology provides, thereby eliminating voids, moisture and other contaminants, increasing the contact surfaces for better electrical and thermal conduction.
    Type: Grant
    Filed: March 31, 2003
    Date of Patent: January 12, 2010
    Assignee: The Research Foundation of the State University of New York
    Inventors: Bahgat Sammakia, Wayne E. Jones, Jr., Ganesh Subbarayan