Patents by Inventor Wayne Y. W. Hsueh

Wayne Y. W. Hsueh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110223729
    Abstract: A method of fabricating a semiconductor integrated circuit including a power diode includes providing a semiconductor substrate of first conductivity type, fabricating a integrated circuit such as a CMOS transistor circuit in a first region of the substrate, and fabricating a power diode in a second region in the semiconductor substrate. Dielectric material is formed between the first region and the second regions thereby providing electrical isolation between the integrated circuit in the first region and the power diode in the second region. The power diode can comprise a plurality of MOS source/drain elements and associated gate elements all connected together by one electrode of the diode, and a semiconductor layer in the second region can function as another source/drain of the power diode.
    Type: Application
    Filed: May 16, 2011
    Publication date: September 15, 2011
    Applicant: DIODES, INCORPORATED
    Inventors: Paul Chang, Geeng-Chuan Chern, Prognyan Ghosh, Wayne Y.W. Hsueh, Vladmir Rodov
  • Patent number: 7964933
    Abstract: A method of fabricating a semiconductor integrated circuit including a power diode includes providing a semiconductor substrate of first conductivity type, fabricating a integrated circuit such as a CMOS transistor circuit in a first region of the substrate, and fabricating a power diode in a second region in the semiconductor substrate. Dielectric material is formed between the first region and the second regions thereby providing electrical isolation between the integrated circuit in the first region and the power diode in the second region. The power diode can comprise a plurality of MOS source/drain elements and associated gate elements all connected together by one electrode of the diode, and a semiconductor layer in the second region can function as another source/drain of the power diode.
    Type: Grant
    Filed: June 22, 2007
    Date of Patent: June 21, 2011
    Assignee: Diodes Inc.
    Inventors: Paul Chang, Geeng-Chuan Chern, Prognyan Ghosh, Wayne Y. W. Hsueh, Vladimir Rodov
  • Patent number: 7250668
    Abstract: A method of fabricating a semiconductor integrated circuit including a power diode includes providing a semiconductor substrate of first conductivity type, fabricating a integrated circuit such as a CMOS transistor circuit in a first region of the substrate, and fabricating a power diode in a second region in the semiconductor substrate. Dielectric material is formed between the first region and the second regions thereby providing electrical isolation between the integrated circuit in the first region and the power diode in the second region. The power diode can comprise a plurality of MOS source/drain elements and associated gate elements all connected together by one electrode of the diode, and a semiconductor layer in the second region can function as another source/drain of the power diode.
    Type: Grant
    Filed: January 20, 2005
    Date of Patent: July 31, 2007
    Assignee: Diodes, Inc.
    Inventors: Paul Chang, Geeng-Chuan Chern, Prognyan Ghosh, Wayne Y. W. Hsueh, Vladimir Rodov
  • Patent number: 6765264
    Abstract: A vertical semiconductor rectifier device includes a semiconductor substrate of first conductivity type and having a plurality of gates insulatively formed on a first major surface and a plurality of source/drain regions of the first conductivity type formed in surface regions of second conductivity type in the first major surface adjacent to the gates. A plurality of channels of the second conductivity type each abuts a source/drain region and extends under a gate, each channel being laterally graded with a sloped P-N junction sepcarating the channel region from the substrate of first conductivity type, In fabricating the vertical semiconductor rectifier device, a partial ion mask is formed on the surface of the semiconductor with the mask having a sloped surface which varies the path length of ions through the mask to form laterally-graded channel regions.
    Type: Grant
    Filed: May 27, 2003
    Date of Patent: July 20, 2004
    Assignee: Advanced Power Devices
    Inventors: Paul Chang, Geeng-Chuan Chern, Wayne Y. W. Hsueh, Vladimir Rodov, Charles Lin
  • Patent number: 6743703
    Abstract: A two-terminal power diode has improved reverse bias breakdown voltage and on resistance includes a semiconductor body having two opposing surfaces and a superjunction structure therebetween, the superjunction structure including a plurality of alternating P and N doped regions aligned generally perpendicular to the two surfaces. The P and N doped regions can be parallel stripes or a mesh with each region being surrounded by doped material of opposite conductivity type. A diode junction associated with one surface can be an anode region with a gate controlled channel region connecting the anode region to the superjunction structure. Alternatively, the diode junction can comprise a metal forming a Schottky junction with the one surface. The superjunction structure is within the cathode and spaced from the anode. The spacing can be varied during device fabrication.
    Type: Grant
    Filed: September 9, 2002
    Date of Patent: June 1, 2004
    Assignee: APD Semiconductor, Inc.
    Inventors: Vladimir Rodov, Paul Chang, Jianren Bao, Wayne Y. W. Hsueh, Arthur Ching-Lang Chiang, Geeng-Chuan Chern
  • Patent number: 6624030
    Abstract: A vertical semiconductor rectifier device includes a semiconductor substrate of first conductivity type and having a plurality of gates insulatively formed on a first major surface and a plurality of source/drain regions of the first conductivity type formed in surface regions of second conductivity type in the first major surface adjacent to the gates. A plurality of channels of the second conductivity type each abuts a source/drain region and extends under a gate, each channel being laterally graded with a sloped P-N junction separating the channel region from the substrate of first conductivity type. In fabricating the vertical semiconductor rectifier device, a partial ion mask is formed on the surface of the semiconductor with the mask having a sloped surface which varies the path length of ions through the mask to form laterally-graded channel regions.
    Type: Grant
    Filed: December 19, 2000
    Date of Patent: September 23, 2003
    Assignee: Advanced Power Devices, Inc.
    Inventors: Paul Chang, Geeng-Chuan Chern, Wayne Y. W. Hsueh, Vladimir Rodov, Charles Lin
  • Patent number: 6537860
    Abstract: A method for manufacturing a discrete power rectifier device having a VLSI multi-cell design employs a two spacer approach to defining a P/N junction profile having good breakdown voltage characteristics. The method provides highly repeatable device characteristics at reduced cost. The active channel regions of the device are also defined using the same two spacers. The method is a self-aligned process and channel dimensions and doping characteristics may be precisely controlled despite inevitable process variations in spacer formation. Only two masking steps are required, and additional spacers for defining the body region profile can be avoided, reducing processing costs.
    Type: Grant
    Filed: December 18, 2000
    Date of Patent: March 25, 2003
    Assignees: APD Semiconductor, Inc., Fujifilm Microdevices Company, Ltd.
    Inventors: Hidenori Akiyama, Paul Chang, Geeng-Chuan Chern, Wayne Y. W. Hsueh, Haru Ohkawa, Yasuo Ohtsuki, Vladimir Rodov
  • Publication number: 20030006473
    Abstract: A two-terminal power diode has improved reverse bias breakdown voltage and on resistance includes a semiconductor body having two opposing surfaces and a superjunction structure therebetween, the superjunction structure including a plurality of alternating P and N doped regions aligned generally perpendicular to the two surfaces. The P and N doped regions can be parallel stripes or a mesh with each region being surrounded by doped material of opposite conductivity type. A diode junction associated with one surface can be an anode region with a gate controlled channel region connecting the anode region to the superjunction structure. Alternatively, the diode junction can comprise a metal forming a Schottky junction with the one surface. The superjunction structure is within the cathode and spaced from the anode. The spacing can be varied during device fabrication.
    Type: Application
    Filed: September 9, 2002
    Publication date: January 9, 2003
    Applicant: APD Semiconductor, Inc.
    Inventors: Vladimir Rodov, Paul Chang, Jianren Bao, Wayne Y.W. Hsueh, Arthur Ching-Lang Chiang, Geeng-Chuan Chern
  • Patent number: 6498367
    Abstract: A power rectifier having low on resistance, fast recovery time and low forward voltage drop. In a preferred embodiment, the present invention provides a power rectifier device employing a vertical device structure, i.e., with current flow between the major surfaces of the discrete device. The device employs a large number of parallel connected cells, each comprising a MOSFET structure with a gate to drain short via a common conductive layer. This provides a low Vf path through the channel regions of the MOSFET cells to the contact metallization on the other side of the integrated circuit. A thin gate structure is formed annularly around pedestal regions on the upper surface of the device and a precisely controlled body implant defines the channel region and allows controllable device characteristics, including gate threshold voltage and Vf.
    Type: Grant
    Filed: March 8, 2000
    Date of Patent: December 24, 2002
    Assignee: APD Semiconductor, Inc.
    Inventors: Paul Chang, Geeng-Chuan (aka Michael) Chern, Wayne Y. W. Hsueh, Vladimir Rodov
  • Patent number: 6448160
    Abstract: A semiconductor rectifying device which emulates the characteristics of a low forward voltage drop Schottky diode and which is capable of a variety of electrical characteristics from less than 1 A to greater than 1000 A current with adjustable breakdown voltage. The manufacturing process provides for uniformity and controllability of operating parameters, high yield, and readily variable device sizes. The device includes a semiconductor body with a guard ring on one surface to define a device region in which are optionally formed a plurality of conductive plugs. Between the guard ring and the conductive plugs are a plurality of source/drain, gate and channel elements which function with the underlying substrate in forming a MOS transistor.
    Type: Grant
    Filed: April 6, 2000
    Date of Patent: September 10, 2002
    Assignee: APD Semiconductor, Inc.
    Inventors: Paul Chang, Geeng-Chuan Chern, Wayne Y. W. Hsueh, Vladimir Rodov
  • Patent number: 6426541
    Abstract: A Schottky diode comprises a semiconductor body of one conductivity type, the semiconductor body having a grooved surface, a metal layer on the grooved surface and forming a Schottky junction with sidewalls of the grooved surface and ohmic contacts with top portions of the grooved surface. The semiconductor body preferably includes a silicon substrate with the grooved surface being on a device region defined by a guard ring of a conductivity type opposite to the conductivity type of the semiconductor body, and a plurality of doped regions at the bottom of grooves and forming P-N junctions with the semiconductor body. The P-N junctions of the doped regions form carrier depletion regions across and spaced from the grooves to increase the reverse bias breakdown voltage and reduce the reverse bias leakage current. The ohmic contacts of the metal layer increase forward current and reduce forward voltage of the Schottky diode.
    Type: Grant
    Filed: December 1, 2000
    Date of Patent: July 30, 2002
    Assignee: APD Semiconductor, Inc.
    Inventors: Paul Chang, Geeng-Chuan Chern, Wayne Y. W. Hsueh, Vladimir Rodov
  • Publication number: 20020074595
    Abstract: A vertical semiconductor rectifier device includes a semiconductor substrate of first conductivity type and having a plurality of gates insulatively formed on a first major surface and a plurality of source/drain regions of the first conductivity type formed in surface regions of second conductivity type in the first major surface adjacent to the gates. A plurality of channels of the second conductivity type each abuts a source/drain region and extends under a gate, each channel being laterally graded with a sloped P-N junction separating the channel region from the substrate of first conductivity type. In fabricating the vertical semiconductor rectifier device, a partial ion mask is formed on the surface of the semiconductor with the mask having a sloped surface which varies the path length of ions through the mask to form laterally-graded channel regions.
    Type: Application
    Filed: December 19, 2000
    Publication date: June 20, 2002
    Applicant: Advanced Power Devices
    Inventors: Paul Chang, Geeng-Chuan Chern, Wayne Y.W. Hsueh, Vladimir Rodov, Charles Lin
  • Publication number: 20020076860
    Abstract: A method for manufacturing a discrete power rectifier device having a VLSI multi-cell design employs a two spacer approach to defining a P/N junction profile having good breakdown voltage characteristics. The method provides highly repeatable device characteristics at reduced cost. The active channel regions of the device are also defined using the same two spacers. The method is a self-aligned process and channel dimensions and doping characteristics may be precisely controlled despite inevitable process variations in spacer formation. Only two masking steps are required, and additional spacers for defining the body region profile can be avoided, reducing processing costs.
    Type: Application
    Filed: December 18, 2000
    Publication date: June 20, 2002
    Inventors: Hidenori Akiyama, Paul Chang, Geeng-Chuan Chern, Wayne Y.W. Hsueh, Haru Ohkawa, Yasuo Ohtsuki, Vladimir Rodov
  • Patent number: 6404033
    Abstract: A Schottky diode comprises a semiconductor body of one conductivity type, the semiconductor body having a grooved surface, a metal layer on the grooved surface and forming a Schottky junction with the semiconductor body. The semiconductor body preferably includes a silicon substrate with the grooved surface being on a device region defined by a guard ring of a conductivity type opposite to the conductivity type of the semiconductor body, and a plurality of doped regions at the bottom of grooves and forming P-N junctions with the semiconductor body. The P-N junctions of the doped regions form carrier depletion regions across and spaced from the grooves to increase the reverse bias breakdown voltage and reduce the reverse bias leakage current.
    Type: Grant
    Filed: July 20, 2000
    Date of Patent: June 11, 2002
    Assignee: APD Semiconductor, Inc.
    Inventors: Paul Chang, Geeng-Chuan Chern, Wayne Y. W. Hsueh, Vladimir Rodov
  • Patent number: 6399996
    Abstract: A Schottky diode comprises a semiconductor body of one conductivity type, the semiconductor body having a grooved surface, and a metal layer on the grooved surface and forming a Schottky junction with the semiconductor body. The semiconductor body preferably includes a silicon substrate with the grooved surface being on a device region defined by a guard ring of a conductivity type opposite to the conductivity type of the semiconductor body.
    Type: Grant
    Filed: July 20, 2000
    Date of Patent: June 4, 2002
    Assignee: APD Semiconductor, Inc.
    Inventors: Paul Chang, Geeng-Chuan Chern, Wayne Y. W. Hsueh, Vladimir Rodov
  • Publication number: 20020019115
    Abstract: A power rectifier having low on resistance, mass recovery times and low forward voltage drop. In a preferred embodiment, the present invention provides a power rectifier device employing a vertical device structure, i.e., with current flow between the major surfaces of the discrete device. The device employs a large number of parallel connected cells, each comprising a MOSFET structure with a gate to drain short via a common metallization. This provides a low Vf path through the channel regions of the MOSFET cells to the source region on the other side of the integrated circuit. A thin gate structure is formed annularly around the pedestal regions on the upper surface of the device and a precisely controlled body implant defines the channel region and allows controllable device characteristics, including gate threshold voltage and Vf. A parallel Schottky diode is also provided which increases the switching speed of the MOSFET cells.
    Type: Application
    Filed: September 7, 2001
    Publication date: February 14, 2002
    Inventors: Vladimir Rodov, Wayne Y.W. Hsueh, Paul Chang, Michael Chern
  • Publication number: 20020008237
    Abstract: A Schottky diode comprises a semiconductor body of one conductivity type, the semiconductor body having a grooved surface, a metal layer on the grooved surface and forming a Schottky junction with sidewalls of the grooved surface and ohmic contacts with top portions of the grooved surface. The semiconductor body preferably includes a silicon substrate with the grooved surface being on a device region defined by a guard ring of a conductivity type opposite to the conductivity type of the semiconductor body, and a plurality of doped regions at the bottom of grooves and forming P-N junctions with the semiconductor body. The P-N junctions of the doped regions form carrier depletion regions across and spaced from the grooves to increase the reverse bias breakdown voltage and reduce the reverse bias leakage current. The ohmic contacts of the metal layer increase forward current and reduce forward voltage of the Schottky diode.
    Type: Application
    Filed: December 1, 2000
    Publication date: January 24, 2002
    Applicant: Advanced Power Devices
    Inventors: Paul Chang, Geeng-Chuan Chern, Wayne Y.W. Hsueh, Vladimir Rodov
  • Patent number: 6331455
    Abstract: A power rectifier having low on resistance, mass recovery times and low forward voltage drop. In a preferred embodiment, the present invention provides a power rectifier device employing a vertical device structure, i.e., with current flow between the major surfaces of the discrete device. The device employs a large number of parallel connected cells, each comprising a MOSFET structure with a gate to drain short via a common metallization. This provides a low Vf path through the channel regions of the MOSFET cells to the source region on the other side of the integrated circuit. A thin gate structure is formed annularly around the pedestal regions on the upper surface of the device and a precisely controlled body implant defines the channel region and allows controllable device characteristics, including gate threshold voltage and Vf. A parallel Schottky diode is also provided which increases the switching speed of the MOSFET cells.
    Type: Grant
    Filed: April 1, 1999
    Date of Patent: December 18, 2001
    Assignee: Advanced Power Devices, Inc.
    Inventors: Vladimir Rodov, Wayne Y. W. Hsueh, Paul Chang, Michael Chern
  • Patent number: 6186408
    Abstract: A power rectifier having low on resistance, fast recovery times and very low forward voltage drop. In a preferred embodiment, the present invention provides a power rectifier device employing a vertical device structure, i.e., with current flow between the major surfaces of the discrete device. The device employs a large number of parallel connected cells, each comprising a MOSFET structure with a gate to drain short via a common metallization. A self aligned body implant and a shallow silicide drain contact region integrated with a metal silicide drain contact define a narrow channel region and allow very high cell density. This provides a low Vf path through the channel regions of the MOSFET cells to the contact on the other side of the integrated circuit. The present invention further provides a method for manufacturing a rectifier device which provides the above desirable device characteristics in a repeatable manner. Also, only two masking steps are required, reducing processing costs.
    Type: Grant
    Filed: May 28, 1999
    Date of Patent: February 13, 2001
    Assignee: Advanced Power Devices, Inc.
    Inventors: Vladimir Rodov, Wayne Y. W. Hsueh, Paul Chang, Michael Chern