Patents by Inventor Wee Peh

Wee Peh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070073167
    Abstract: The preferred embodiment of the present invention comprises a single microprocessor-based interface that connects between a noninvasive blood pressure (NIBP) sensor and an invasive blood pressure (IBP) monitor or module. The interface effectively emulates an IBP transducer in such a way that the IBP monitor sees the interface as if it were a regular IBP transducer from a fluid-filled blood pressure monitoring line. It receives the signal from an NIBP sensor and determines the blood pressure corresponding to the signal. It accepts the excitation voltage provided by the IBP monitor. From the excitation voltage and a known transducer sensitivity which the IBP monitor is configured to work with, the interface emulates the IBP transducer output signal corresponding to the blood pressure. The interface also emulates the input and output impedances of the IBP transducer which the IBP monitor is configured to work with.
    Type: Application
    Filed: November 16, 2006
    Publication date: March 29, 2007
    Inventors: Kim-Gau Ng, Wee Peh
  • Publication number: 20070073166
    Abstract: The preferred embodiment of the present invention comprises a single microprocessor-based interface that connects between a noninvasive blood pressure (NIBP) sensor and an invasive blood pressure (IBP) monitor or module. The interface effectively emulates an IBP transducer in such a way that the IBP monitor sees the interface as if it were a regular IBP transducer from a fluid-filled blood pressure monitoring line. It receives the signal from an NIBP sensor and determines the blood pressure corresponding to the signal. It accepts the excitation voltage provided by the IBP monitor. From the excitation voltage and a known transducer sensitivity which the IBP monitor is configured to work with, the interface emulates the IBP transducer output signal corresponding to the blood pressure. The interface also emulates the input and output impedances of the IBP transducer which the IBP monitor is configured to work with.
    Type: Application
    Filed: November 16, 2006
    Publication date: March 29, 2007
    Inventors: Kim-Gau Ng, Wee Peh, Ngak Chua
  • Publication number: 20070073165
    Abstract: The preferred embodiment of the present invention comprises a single microprocessor-based interface that connects between a noninvasive blood pressure (NIBP) sensor and an invasive blood pressure (IBP) monitor or module. The interface effectively emulates an IBP transducer in such a way that the IBP monitor sees the interface as if it were a regular IBP transducer from a fluid-filled blood pressure monitoring line. It receives the signal from an NIBP sensor and determines the blood pressure corresponding to the signal. It accepts the excitation voltage provided by the IBP monitor. From the excitation voltage and a known transducer sensitivity which the IBP monitor is configured to work with, the interface emulates the IBP transducer output signal corresponding to the blood pressure. The interface also emulates the input and output impedances of the IBP transducer which the IBP monitor is configured to work with.
    Type: Application
    Filed: November 16, 2006
    Publication date: March 29, 2007
    Inventors: Kim-Gau Ng, Wee Peh, Ngak Chua
  • Publication number: 20060287601
    Abstract: The preferred embodiment of the present invention comprises a single microprocessor-based interface that connects between a noninvasive blood pressure (NIBP) sensor and an invasive blood pressure (IBP) monitor or module. The interface effectively emulates an IBP transducer in such a way that the IBP monitor sees the interface as if it were a regular IBP transducer from a fluid-filled blood pressure monitoring line. It receives the signal from an NIBP sensor and determines the blood pressure corresponding to the signal. It accepts the excitation voltage provided by the IBP monitor. From the excitation voltage and a known transducer sensitivity which the IBP monitor is configured to work with, the interface emulates the IBP transducer output signal corresponding to the blood pressure. The interface also emulates the input and output impedances of the IBP transducer which the IBP monitor is configured to work with.
    Type: Application
    Filed: August 10, 2006
    Publication date: December 21, 2006
    Inventors: Kim-Gau Ng, Wee Peh, Ngak Chua