Patents by Inventor Wei-Chao Chiu
Wei-Chao Chiu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240379357Abstract: Implantation mask formation techniques described herein include increasing an initial aspect ratio of a pattern in an implantation mask by non-lithography techniques, which may include forming a resist hardening layer on the implantation mask. The pattern may be formed by photolithography techniques to the initial aspect ratio that reduces or minimizes the likelihood of pattern collapse during formation of the pattern. Then, the resist hardening layer is formed on the implantation mask to increase the height of the pattern and reduce the width of the pattern, which increases the aspect ratio between the height of the openings or trenches and the width of the openings or trenches of the pattern. In this way, the pattern in the implantation mask may be formed to an ultra-high aspect ratio in a manner that reduces or minimizes the likelihood of pattern collapse during formation of the pattern.Type: ApplicationFiled: July 25, 2024Publication date: November 14, 2024Inventors: Wei-Chao CHIU, Yong-Jin LIOU, Yu-Wen CHEN, Chun-Wei CHANG, Ching-Sen KUO, Feng-Jia SHIU
-
Patent number: 12100592Abstract: Implantation mask formation techniques described herein include increasing an initial aspect ratio of a pattern in an implantation mask by non-lithography techniques, which may include forming a resist hardening layer on the implantation mask. The pattern may be formed by photolithography techniques to the initial aspect ratio that reduces or minimizes the likelihood of pattern collapse during formation of the pattern. Then, the resist hardening layer is formed on the implantation mask to increase the height of the pattern and reduce the width of the pattern, which increases the aspect ratio between the height of the openings or trenches and the width of the openings or trenches of the pattern. In this way, the pattern in the implantation mask may be formed to an ultra-high aspect ratio in a manner that reduces or minimizes the likelihood of pattern collapse during formation of the pattern.Type: GrantFiled: May 12, 2023Date of Patent: September 24, 2024Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Wei-Chao Chiu, Yong-Jin Liou, Yu-Wen Chen, Chun-Wei Chang, Ching-Sen Kuo, Feng-Jia Shiu
-
Publication number: 20240282582Abstract: A method of fabricating a semiconductor device includes determining a concentration of a byproduct in a photoresist composition. A photoresist layer is formed over a substrate using the photoresist composition when the concentration of the byproduct is below a threshold value. A photoresist pattern is formed in the photoresist layer exposing a portion of the substrate, and an operation is performed on the exposed portion of the substrate.Type: ApplicationFiled: February 16, 2023Publication date: August 22, 2024Inventors: Wei-Chao CHIU, Yong-Jin LIOU, Chun-Wei CHANG, Ching-Sen KUO, Feng-Jia SHIU
-
Publication number: 20240274637Abstract: A method includes performing a first lithography process using a first pattern of a first photomask to form a first photoresist pattern on a front side of a device substrate; performing a first implantation process using the first pattern as a mask to form first isolation regions in the device substrate; after performing the first implantation process, performing a second lithography process using a second pattern of a second photomask to form a second photoresist pattern on the front side of the device substrate, the second pattern being shifted from the first pattern by a distance less than the first pitch and in the first direction; performing a second implantation process using the second photoresist pattern as a mask to form second isolation regions in the device substrate and spaced apart from the first isolation regions; and forming pixels between the first and second isolation regions.Type: ApplicationFiled: April 23, 2024Publication date: August 15, 2024Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Wei-Chao CHIU, Chun-Wei CHANG, Ching-Sen KUO, Feng-Jia SHIU
-
Patent number: 11996432Abstract: A method includes performing a first lithography process using a first pattern of a first photomask to form a first photoresist pattern on a front side of a device substrate; performing a first implantation process using the first pattern as a mask to form first isolation regions in the device substrate; after performing the first implantation process, performing a second lithography process using a second pattern of a second photomask to form a second photoresist pattern on the front side of the device substrate, the second pattern being shifted from the first pattern by a distance less than the first pitch and in the first direction; performing a second implantation process using the second photoresist pattern as a mask to form second isolation regions in the device substrate and spaced apart from the first isolation regions; and forming pixels between the first and second isolation regions.Type: GrantFiled: July 25, 2022Date of Patent: May 28, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Wei-Chao Chiu, Chun-Wei Chang, Ching-Sen Kuo, Feng-Jia Shiu
-
Patent number: 11911377Abstract: The present disclosure provides a method for treating hypertension by using a compound, wherein the compound is selected from the group consisting of: (E)-4-(3-(3-methyl benzyloxy)benzylidene)-1-phenylpyrazolidine-3,5-dione, (2R)-2-amino-3-(2,3-dihydro-1H-inden-1-yl)-N?-((E)-quinolin-7-ylmethylene)propane hydrazide, and a combination thereof. The present disclosure uses a small molecule compound (E)-4-(3-(3-methyl benzyloxy)benzylidene)-1-phenylpyrazolidine-3,5-dione, (2R)-2-amino-3-(2,3-dihydro-1H-inden-1-yl)-N?-((E)-quinolin-7-ylmethylene)propane hydrazide or a combination thereof, which can be developed as a therapeutic drug for lowering blood pressure, whether it is taken orally or injected.Type: GrantFiled: November 3, 2021Date of Patent: February 27, 2024Assignee: FU JEN CATHOLIC UNIVERSITYInventors: Fu-Tien Chiang, Wei-Chao Chiu
-
Publication number: 20230402315Abstract: Double patterning techniques described herein may reduce corner rounding, etch loading, and/or other defects that might otherwise arise during formation of a deep trench isolation (DTI) structure in a pixel array. The double patterning techniques include forming a first set of trenches in a first direction and forming a second set of trenches in a second direction in a plurality of patterning operations such that minimal to no etch loading and/or corner rounding is present at and/or near the intersections of the first set of trenches and the second set of trenches.Type: ApplicationFiled: August 10, 2023Publication date: December 14, 2023Inventors: Wei-Chao CHIU, Yu-Wen CHEN, Yong-Jin LIOU, Chun-Wei CHANG, Ching-Sen KUO, Feng-Jia SHIU
-
Publication number: 20230290637Abstract: Implantation mask formation techniques described herein include increasing an initial aspect ratio of a pattern in an implantation mask by non-lithography techniques, which may include forming a resist hardening layer on the implantation mask. The pattern may be formed by photolithography techniques to the initial aspect ratio that reduces or minimizes the likelihood of pattern collapse during formation of the pattern. Then, the resist hardening layer is formed on the implantation mask to increase the height of the pattern and reduce the width of the pattern, which increases the aspect ratio between the height of the openings or trenches and the width of the openings or trenches of the pattern. In this way, the pattern in the implantation mask may be formed to an ultra-high aspect ratio in a manner that reduces or minimizes the likelihood of pattern collapse during formation of the pattern.Type: ApplicationFiled: May 12, 2023Publication date: September 14, 2023Inventors: Wei-Chao CHIU, Yong-Jin LIOU, Yu-Wen CHEN, Chun-Wei CHANG, Ching-Sen KUO, Feng-Jia SHIU
-
Patent number: 11658031Abstract: Implantation mask formation techniques described herein include increasing an initial aspect ratio of a pattern in an implantation mask by non-lithography techniques, which may include forming a resist hardening layer on the implantation mask. The pattern may be formed by photolithography techniques to the initial aspect ratio that reduces or minimizes the likelihood of pattern collapse during formation of the pattern. Then, the resist hardening layer is formed on the implantation mask to increase the height of the pattern and reduce the width of the pattern, which increases the aspect ratio between the height of the openings or trenches and the width of the openings or trenches of the pattern. In this way, the pattern in the implantation mask may be formed to an ultra-high aspect ratio in a manner that reduces or minimizes the likelihood of pattern collapse during formation of the pattern.Type: GrantFiled: June 1, 2021Date of Patent: May 23, 2023Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Wei-Chao Chiu, Yong-Jin Liou, Yu-Wen Chen, Chun-Wei Chang, Ching-Sen Kuo, Feng-Jia Shiu
-
Publication number: 20230119423Abstract: The present disclosure provides a method for treating hypertension by using a compound, wherein the compound is selected from the group consisting of: (E)-4-(3-(3-methyl benzyloxy)benzylidene)-1-phenylpyrazolidine-3,5-dione, (2R)-2-amino-3-(2,3-dihydro-1H-inden-1-yl)-N?-((E)-quinolin-7-ylmethylene)propane hydrazide, and a combination thereof. The present disclosure uses a small molecule compound (E)-4-(3-(3-methyl benzyloxy)benzylidene)-1-phenylpyrazolidine-3,5-dione, (2R)-2-amino-3-(2,3-dihydro-1H-inden-1-yl)-N?-((E)-quinolin-7-ylmethylene)propane hydrazide or a combination thereof, which can be developed as a therapeutic drug for lowering blood pressure, whether it is taken orally or injected.Type: ApplicationFiled: November 3, 2021Publication date: April 20, 2023Inventors: Fu-Tien Chiang, Wei-Chao Chiu
-
Publication number: 20220359588Abstract: A method includes performing a first lithography process using a first pattern of a first photomask to form a first photoresist pattern on a front side of a device substrate; performing a first implantation process using the first pattern as a mask to form first isolation regions in the device substrate; after performing the first implantation process, performing a second lithography process using a second pattern of a second photomask to form a second photoresist pattern on the front side of the device substrate, the second pattern being shifted from the first pattern by a distance less than the first pitch and in the first direction; performing a second implantation process using the second photoresist pattern as a mask to form second isolation regions in the device substrate and spaced apart from the first isolation regions; and forming pixels between the first and second isolation regions.Type: ApplicationFiled: July 25, 2022Publication date: November 10, 2022Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Wei-Chao CHIU, Chun-Wei CHANG, Ching-Sen KUO, Feng-Jia SHIU
-
Publication number: 20220285203Abstract: Double patterning techniques described herein may reduce corner rounding, etch loading, and/or other defects that might otherwise arise during formation of a deep trench isolation (DTI) structure in a pixel array. The double patterning techniques include forming a first set of trenches in a first direction and forming a second set of trenches in a second direction in a plurality of patterning operations such that minimal to no etch loading and/or corner rounding is present at and/or near the intersections of the first set of trenches and the second set of trenches.Type: ApplicationFiled: June 1, 2021Publication date: September 8, 2022Inventors: Wei-Chao CHIU, Yu-Wen CHEN, Yong-Jin LIOU, Chun-Wei CHANG, Ching-Sen KUO, Feng-Jia SHIU
-
Publication number: 20220285155Abstract: Implantation mask formation techniques described herein include increasing an initial aspect ratio of a pattern in an implantation mask by non-lithography techniques, which may include forming a resist hardening layer on the implantation mask. The pattern may be formed by photolithography techniques to the initial aspect ratio that reduces or minimizes the likelihood of pattern collapse during formation of the pattern. Then, the resist hardening layer is formed on the implantation mask to increase the height of the pattern and reduce the width of the pattern, which increases the aspect ratio between the height of the openings or trenches and the width of the openings or trenches of the pattern. In this way, the pattern in the implantation mask may be formed to an ultra-high aspect ratio in a manner that reduces or minimizes the likelihood of pattern collapse during formation of the pattern.Type: ApplicationFiled: June 1, 2021Publication date: September 8, 2022Inventors: Wei-Chao CHIU, Yong-Jin LIOU, Yu-Wen CHEN, Chun-Wei CHANG, Ching-Sen KUO, Feng-Jia SHIU
-
Patent number: 11411033Abstract: A method includes forming a first photoresist layer on a front side of a device substrate and having first trenches spaced apart from each other. A first implantation process is performed using the first photoresist layer as a mask to form first isolation regions in the device substrate. A second photoresist layer is formed on the front side and has second trenches. A second implantation process is performed using the second photoresist layer as a mask to form second isolation regions in the device substrate and crossing over the first isolation regions. A third photoresist layer is formed on the front side and has third trenches spaced apart from each other. A third implantation process is performed using the third photoresist layer as a mask to form third isolation regions in the device substrate and crossing over the first isolation regions but spaced apart from the second isolation regions.Type: GrantFiled: March 13, 2020Date of Patent: August 9, 2022Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Wei-Chao Chiu, Chun-Wei Chang, Ching-Sen Kuo, Feng-Jia Shiu
-
Patent number: 11086221Abstract: A first photoresist pattern and a second photoresist pattern are formed over a substrate. The first photoresist pattern is separated from the second photoresist pattern by a gap. A chemical mixture is coated on the first and second photoresist patterns. The chemical mixture contains a chemical material and surfactant particles mixed into the chemical material. The chemical mixture fills the gap. A baking process is performed on the first and second photoresist patterns, the baking process causing the gap to shrink. At least some surfactant particles are disposed at sidewall boundaries of the gap. A developing process is performed on the first and second photoresist patterns. The developing process removes the chemical mixture in the gap and over the photoresist patterns. The surfactant particles disposed at sidewall boundaries of the gap reduce a capillary effect during the developing process.Type: GrantFiled: August 3, 2020Date of Patent: August 10, 2021Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Wei-Chao Chiu, Chih-Chien Wang, Feng-Jia Shiu, Ching-Sen Kuo, Chun-Wei Chang, Kai Tzeng
-
Publication number: 20210193705Abstract: A method includes forming a first photoresist layer on a front side of a device substrate and having first trenches spaced apart from each other. A first implantation process is performed using the first photoresist layer as a mask to form first isolation regions in the device substrate. A second photoresist layer is formed on the front side and has second trenches. A second implantation process is performed using the second photoresist layer as a mask to form second isolation regions in the device substrate and crossing over the first isolation regions. A third photoresist layer is formed on the front side and has third trenches spaced apart from each other. A third implantation process is performed using the third photoresist layer as a mask to form third isolation regions in the device substrate and crossing over the first isolation regions but spaced apart from the second isolation regions.Type: ApplicationFiled: March 13, 2020Publication date: June 24, 2021Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Wei-Chao CHIU, Chun-Wei CHANG, Ching-Sen KUO, Feng-Jia SHIU
-
Publication number: 20200365645Abstract: A first photoresist pattern and a second photoresist pattern are formed over a substrate. The first photoresist pattern is separated from the second photoresist pattern by a gap. A chemical mixture is coated on the first and second photoresist patterns. The chemical mixture contains a chemical material and surfactant particles mixed into the chemical material. The chemical mixture fills the gap. A baking process is performed on the first and second photoresist patterns, the baking process causing the gap to shrink. At least some surfactant particles are disposed at sidewall boundaries of the gap. A developing process is performed on the first and second photoresist patterns. The developing process removes the chemical mixture in the gap and over the photoresist patterns. The surfactant particles disposed at sidewall boundaries of the gap reduce a capillary effect during the developing process.Type: ApplicationFiled: August 3, 2020Publication date: November 19, 2020Inventors: Wei-Chao Chiu, Chih-Chien Wang, Feng-Jia Shiu, Ching-Sen Kuo, Chun-Wei Chang, Kai Tzeng
-
Patent number: 10734436Abstract: A first photoresist pattern and a second photoresist pattern are formed over a substrate. The first photoresist pattern is separated from the second photoresist pattern by a gap. A chemical mixture is coated on the first and second photoresist patterns. The chemical mixture contains a chemical material and surfactant particles mixed into the chemical material. The chemical mixture fills the gap. A baking process is performed on the first and second photoresist patterns, the baking process causing the gap to shrink. At least some surfactant particles are disposed at sidewall boundaries of the gap. A developing process is performed on the first and second photoresist patterns. The developing process removes the chemical mixture in the gap and over the photoresist patterns. The surfactant particles disposed at sidewall boundaries of the gap reduce a capillary effect during the developing process.Type: GrantFiled: September 26, 2018Date of Patent: August 4, 2020Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Wei-Chao Chiu, Chih-Chien Wang, Feng-Jia Shiu, Ching-Sen Kuo, Chun-Wei Chang, Kai Tzeng
-
Patent number: 10546889Abstract: Implementations of the disclosure provide a method of fabricating an image sensor device. The method includes forming first trenches in a first photoresist layer using a first photomask having a first pattern to expose a first surface of a substrate, directing ions into the exposed first substrate through the first trenches to form first isolation regions in the substrate, removing the first photoresist layer, forming second trenches in a second photoresist layer using a second photomask having a second pattern to expose a second surface of the substrate, the second pattern being shifted diagonally from the first pattern by half mask pitch, directing ions into the exposed second surface through the second trenches to form second isolation regions in the substrate, the first and second isolation regions being alternatingly disposed in the substrate, and the first and second isolation regions defining pixel regions therebetween, and removing the second photoresist layer.Type: GrantFiled: November 5, 2018Date of Patent: January 28, 2020Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Wei-Chao Chiu, Chih-Chien Wang, Feng-Jia Shiu, Ching-Sen Kuo, Chun-Wei Chang, Kai Tzeng
-
Publication number: 20190088694Abstract: Implementations of the disclosure provide a method of fabricating an image sensor device. The method includes forming first trenches in a first photoresist layer using a first photomask having a first pattern to expose a first surface of a substrate, directing ions into the exposed first substrate through the first trenches to form first isolation regions in the substrate, removing the first photoresist layer, forming second trenches in a second photoresist layer using a second photomask having a second pattern to expose a second surface of the substrate, the second pattern being shifted diagonally from the first pattern by half mask pitch, directing ions into the exposed second surface through the second trenches to form second isolation regions in the substrate, the first and second isolation regions being alternatingly disposed in the substrate, and the first and second isolation regions defining pixel regions therebetween, and removing the second photoresist layer.Type: ApplicationFiled: November 5, 2018Publication date: March 21, 2019Inventors: Wei-Chao CHIU, Chih-Chien WANG, Feng-Jia SHIU, Ching-Sen KUO, Chun-Wei CHANG, Kai TZENG