Patents by Inventor Wei-Che Tsao

Wei-Che Tsao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9012300
    Abstract: A manufacturing method for a shallow trench isolation. First, a substrate is provided, a hard mask layer and a patterned photoresist layer are sequentially formed on the substrate, at least one trench is then formed in the substrate through an etching process, the hard mask layer is removed. Afterwards, a filler is formed at least in the trench and a planarization process is then performed on the filler. Since the planarization process is performed only on the filler, so the dishing phenomenon can effectively be avoided.
    Type: Grant
    Filed: October 1, 2012
    Date of Patent: April 21, 2015
    Assignee: United Microelectronics Corp.
    Inventors: Wu-Sian Sie, Chun-Wei Hsu, Chia-Lung Chang, Chih-Hsun Lin, Chang-Hung Kung, Yu-Ting Li, Wei-Che Tsao, Yen-Ming Chen, Chun-Hsiung Wang, Chia-Lin Hsu
  • Patent number: 8828745
    Abstract: A method for manufacturing TSVs, wherein the method comprises several steps as follows: A stack structure having a substrate and an ILD layer (inter layer dielectric layer) is provided, in which an opening penetrating through the ILD layer and further extending into the substrate is formed. After an insulator layer and a metal barrier layer are formed on the stack structure and the sidewalls of the opening, a top metal layer is then formed on the stack structure to fulfill the opening. A first planarization process stopping on the barrier layer is conducted to remove a portion of the top metal layer. A second planarization process stopping on the ILD layer is subsequently conducted to remove a portion of the metal barrier layer, a portion of the insulator layer and a portion of the top metal layer, wherein the second planarization process has a polishing endpoint determined by a light interferometry or a motor current.
    Type: Grant
    Filed: July 6, 2011
    Date of Patent: September 9, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Wei-Che Tsao, Chia-Lin Hsu, Jen-Chieh Lin, Teng-Chun Tsai, Hsin-Kuo Hsu, Ya-Hsueh Hsieh, Ren-Peng Huang, Chih-Hsien Chen, Wen-Chin Lin, Yung-Lun Hsieh
  • Patent number: 8759219
    Abstract: A planarization method of manufacturing a semiconductor component is provided. A dielectric layer is formed above a substrate and defines a trench therein. A barrier layer and a metal layer are formed in sequence in the trench. A first planarization process is applied to the metal layer by using a first reactant so that a portion of the metal layer is removed. An etching rate of the first reactant to the metal layer is greater than that of the first reactant to the barrier layer. A second planarization process is applied to the barrier layer and the metal layer by using a second reactant so that a portion of the barrier layer and the metal layer are removed to expose the dielectric layer. An etching rate of the second reactant to the barrier layer is greater than that of the second reactant to the metal layer.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: June 24, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Ya-Hsueh Hsieh, Teng-Chun Tsai, Wen-Chin Lin, Hsin-Kuo Hsu, Ren-Peng Huang, Chih-Hsien Chen, Chih-Chin Yang, Hung-Yuan Lu, Jen-Chieh Lin, Wei-Che Tsao
  • Publication number: 20140094017
    Abstract: A manufacturing method for a shallow trench isolation. First, a substrate is provided, a hard mask layer and a patterned photoresist layer are sequentially formed on the substrate, at least one trench is then formed in the substrate through an etching process, the hard mask layer is removed. Afterwards, a filler is formed at least in the trench and a planarization process is then performed on the filler. Since the planarization process is performed only on the filler, so the dishing phenomenon can effectively be avoided.
    Type: Application
    Filed: October 1, 2012
    Publication date: April 3, 2014
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Wu-Sian Sie, Chun-Wei Hsu, Chia-Lung Chang, Chih-Hsun Lin, Chang-Hung Kung, Yu-Ting Li, Wei-Che Tsao, Yen-Ming Chen, Chun-Hsiung Wang, Chia-Lin Hsu
  • Patent number: 8367553
    Abstract: A method for manufacturing TSVs comprises following steps: A stack structure having a substrate, an ILD layer and a dielectric stop layer is provided, in which an opening penetrating through the ILD layer and the dialectic stop layer and further extending into the substrate is formed. After an insulator layer and a metal barrier are formed on the stack structure, a top metal layer is formed on the stack structure to fulfill the opening. A first planarization process stopping on the metal barrier is conducted, wherein the first planarization process has a polishing rate for removing the metal barrier less than that for removing the top metal layer. A second planarization process stopping on the dielectric stop layer is conducted, wherein the second planarization process has a polishing rate for removing the insulator layer greater than that for removing the dielectric stop layer. The dielectric stop layer is than removed.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: February 5, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Wei-Che Tsao, Wen-Chin Lin
  • Publication number: 20130011938
    Abstract: A method for manufacturing TSVs, wherein the method comprises several steps as follows: A stack structure having a substrate and an ILD layer (inter layer dielectric layer) is provided, in which an opening penetrating through the ILD layer and further extending into the substrate is formed. After an insulator layer and a metal barrier layer are formed on the stack structure and the sidewalls of the opening, a top metal layer is then formed on the stack structure to fulfill the opening. A first planarization process stopping on the barrier layer is conducted to remove a portion of the top metal layer. A second planarization process stopping on the ILD layer is subsequently conducted to remove a portion of the metal barrier layer, a portion of the insulator layer and a portion of the top metal layer, wherein the second planarization process has a polishing endpoint determined by a light interferometry or a motor current.
    Type: Application
    Filed: July 6, 2011
    Publication date: January 10, 2013
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Wei-Che TSAO, Chia-Lin Hsu, Jen-Chieh Lin, Teng-Chun Tsai, Hsin-Kuo Hsu, Ya-Hsueh Hsieh, Ren-Peng Huang, Chih-Hsien Chen, Wen-Chin Lin, Yung-Lun Hsieh
  • Publication number: 20120187563
    Abstract: A planarization method of manufacturing a semiconductor component is provided. A dielectric layer is formed above a substrate and defines a trench therein. A barrier layer and a metal layer are formed in sequence in the trench. A first planarization process is applied to the metal layer by using a first reactant so that a portion of the metal layer is removed. An etching rate of the first reactant to the metal layer is greater than that of the first reactant to the barrier layer. A second planarization process is applied to the barrier layer and the metal layer by using a second reactant so that a portion of the barrier layer and the metal layer are removed to expose the dielectric layer. An etching rate of the second reactant to the barrier layer is greater than that of the second reactant to the metal layer.
    Type: Application
    Filed: January 24, 2011
    Publication date: July 26, 2012
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Ya-Hsueh HSIEH, Teng-Chun Tsai, Wen-Chin Lin, Hsin-Kuo Hsu, Ren-Peng Huang, Chih-Hsien Chen, Chih-Chin Yang, Hung-Yuan Lu, Jen-Chieh Lin, Wei-Che Tsao
  • Publication number: 20120142190
    Abstract: A method for manufacturing TSVs comprises following steps: A stack structure having a substrate, an ILD layer and a dielectric stop layer is provided, in which an opening penetrating through the ILD layer and the dialectic stop layer and further extending into the substrate is formed. After an insulator layer and a metal barrier are formed on the stack structure, a top metal layer is formed on the stack structure to fulfill the opening. A first planarization process stopping on the metal barrier is conducted, wherein the first planarization process has a polishing rate for removing the metal barrier less than that for removing the top metal layer. A second planarization process stopping on the dielectric stop layer is conducted, wherein the second planarization process has a polishing rate for removing the insulator layer greater than that for removing the dielectric stop layer. The dielectric stop layer is than removed.
    Type: Application
    Filed: December 7, 2010
    Publication date: June 7, 2012
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Wei-Che TSAO, Wen-Chin Lin
  • Publication number: 20120048296
    Abstract: A cleaning method for a wafer is provided. First, a first cleaning process is performed wherein the first cleaning process includes providing a cleaning solution having a first concentration. Next, a second cleaning process is performed, wherein the second cleaning process includes providing the cleaning solution having a second concentration. The second concentration is substantially greater than the first concentration. Next, a post-cleaning process is performed to provide dilute water.
    Type: Application
    Filed: August 26, 2010
    Publication date: March 1, 2012
    Inventors: Wen-Chin Lin, Kai-Chun Yang, Jen-Chieh Lin, Jeng-Yu Fang, Chia-Lin Hsu, Teng-Chun Tsai, Wei-Che Tsao