Patents by Inventor Wei-Chih Tu

Wei-Chih Tu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11256961
    Abstract: Segmentation is the identification of separate objects within an image. An example is identification of a pedestrian passing in front of a car, where the pedestrian is a first object and the car is a second object. Superpixel segmentation is the identification of regions of pixels within an object that have similar properties. An example is identification of pixel regions having a similar color, such as different articles of clothing worn by the pedestrian and different components of the car. A pixel affinity neural network (PAN) model is trained to generate pixel affinity maps for superpixel segmentation. The pixel affinity map defines the similarity of two points in space. In an embodiment, the pixel affinity map indicates a horizontal affinity and vertical affinity for each pixel in the image. The pixel affinity map is processed to identify the superpixels.
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: February 22, 2022
    Assignee: NVIDIA Corporation
    Inventors: Wei-Chih Tu, Ming-Yu Liu, Varun Jampani, Deqing Sun, Ming-Hsuan Yang, Jan Kautz
  • Publication number: 20200334502
    Abstract: Segmentation is the identification of separate objects within an image. An example is identification of a pedestrian passing in front of a car, where the pedestrian is a first object and the car is a second object. Superpixel segmentation is the identification of regions of pixels within an object that have similar properties. An example is identification of pixel regions having a similar color, such as different articles of clothing worn by the pedestrian and different components of the car. A pixel affinity neural network (PAN) model is trained to generate pixel affinity maps for superpixel segmentation. The pixel affinity map defines the similarity of two points in space. In an embodiment, the pixel affinity map indicates a horizontal affinity and vertical affinity for each pixel in the image. The pixel affinity map is processed to identify the superpixels.
    Type: Application
    Filed: July 6, 2020
    Publication date: October 22, 2020
    Inventors: Wei-Chih Tu, Ming-Yu Liu, Varun Jampani, Deqing Sun, Ming-Hsuan Yang, Jan Kautz
  • Patent number: 10748036
    Abstract: Segmentation is the identification of separate objects within an image. An example is identification of a pedestrian passing in front of a car, where the pedestrian is a first object and the car is a second object. Superpixel segmentation is the identification of regions of pixels within an object that have similar properties An example is identification of pixel regions having a similar color, such as different articles of clothing worn by the pedestrian and different components of the car. A pixel affinity neural network (PAN) model is trained to generate pixel affinity maps for superpixel segmentation. The pixel affinity map defines the similarity of two points in space. In an embodiment, the pixel affinity map indicates a horizontal affinity and vertical affinity for each pixel in the image. The pixel affinity map is processed to identify the superpixels.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: August 18, 2020
    Assignee: NVIDIA Corporation
    Inventors: Wei-Chih Tu, Ming-Yu Liu, Varun Jampani, Deqing Sun, Ming-Hsuan Yang, Jan Kautz
  • Publication number: 20190156154
    Abstract: Segmentation is the identification of separate objects within an image. An example is identification of a pedestrian passing in front of a car, where the pedestrian is a first object and the car is a second object. Superpixel segmentation is the identification of regions of pixels within an object that have similar properties An example is identification of pixel regions having a similar color, such as different articles of clothing worn by the pedestrian and different components of the car. A pixel affinity neural network (PAN) model is trained to generate pixel affinity maps for superpixel segmentation. The pixel affinity map defines the similarity of two points in space. In an embodiment, the pixel affinity map indicates a horizonal affinity and vertical affinity for each pixel in the image. The pixel affinity map is processed to identify the superpixels.
    Type: Application
    Filed: November 13, 2018
    Publication date: May 23, 2019
    Inventors: Wei-Chih Tu, Ming-Yu Liu, Varun Jampani, Deqing Sun, Ming-Hsuan Yang, Jan Kautz