Patents by Inventor Wei-Chin Lee

Wei-Chin Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12087637
    Abstract: Semiconductor devices and methods of manufacturing semiconductor devices with differing threshold voltages are provided. In embodiments the threshold voltages of individual semiconductor devices are tuned through the removal and placement of differing materials within each of the individual gate stacks within a replacement gate process, whereby the removal and placement helps keep the overall process window for a fill material large enough to allow for a complete fill.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: September 10, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chung-Chiang Wu, Hsin-Han Tsai, Wei-Chin Lee, Chia-Ching Lee, Hung-Chin Chung, Cheng-Lung Hung, Da-Yuan Lee
  • Patent number: 11935957
    Abstract: Semiconductor device structures having gate structures with tunable threshold voltages are provided. Various geometries of device structure can be varied to tune the threshold voltages. In some examples, distances from tops of fins to tops of gate structures can be varied to tune threshold voltages. In some examples, distances from outermost sidewalls of gate structures to respective nearest sidewalls of nearest fins to the respective outermost sidewalls (which respective gate structure overlies the nearest fin) can be varied to tune threshold voltages.
    Type: Grant
    Filed: August 9, 2021
    Date of Patent: March 19, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Chiang Wu, Wei-Chin Lee, Shih-Hang Chiu, Chia-Ching Lee, Hsueh Wen Tsau, Cheng-Yen Tsai, Cheng-Lung Hung, Da-Yuan Lee, Ching-Hwanq Su
  • Patent number: 11855098
    Abstract: In an embodiment, a method includes: forming a gate dielectric layer on an interface layer; forming a doping layer on the gate dielectric layer, the doping layer including a dipole-inducing element; annealing the doping layer to drive the dipole-inducing element through the gate dielectric layer to a first side of the gate dielectric layer adjacent the interface layer; removing the doping layer; forming a sacrificial layer on the gate dielectric layer, a material of the sacrificial layer reacting with residual dipole-inducing elements at a second side of the gate dielectric layer adjacent the sacrificial layer; removing the sacrificial layer; forming a capping layer on the gate dielectric layer; and forming a gate electrode layer on the capping layer.
    Type: Grant
    Filed: November 14, 2022
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Cheng-Yen Tsai, Ming-Chi Huang, Zoe Chen, Wei-Chin Lee, Cheng-Lung Hung, Da-Yuan Lee, Weng Chang, Ching-Hwanq Su
  • Publication number: 20230282482
    Abstract: A method of manufacturing a semiconductor device includes forming a gate trench over a semiconductor substrate, depositing a gate dielectric layer and a work function layer in the gate trench, depositing a capping layer over the work function layer, passivating a surface portion of the capping layer to form a passivation layer, removing the passivation layer, depositing a fill layer in the gate trench, recessing the fill layer and the capping layer, and forming a contact metal layer above the capping layer in the gate trench.
    Type: Application
    Filed: June 4, 2022
    Publication date: September 7, 2023
    Inventors: Tsung-Han Shen, Kevin Chang, Yu-Ming Li, Chih-Hsiang Fan, Yi-Ting Wang, Wei-Chin Lee, Hsien-Ming Lee, Chien-Hao Chen, Chi On Chui
  • Publication number: 20230231037
    Abstract: A method of forming a semiconductor device includes: forming a dummy gate over a fin, where the fin protrudes above a substrate; surrounding the dummy gate with a dielectric material; and replacing the dummy gate with a replacement gate structure, where replacing the dummy gate includes: forming a gate trench in the dielectric material, where forming the gate trench includes removing the dummy gate; forming a metal-gate stack in the gate trench, where forming the metal-gate stack includes forming a gate dielectric layer, a first work function layer, and a gap-filling material sequentially in the gate trench; and enlarging a volume of the gap-filling material in the gate trench.
    Type: Application
    Filed: March 20, 2023
    Publication date: July 20, 2023
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Hsiang Fan, Tsung-Han Shen, Jia-Ming Lin, Wei-Chin Lee, Hsien-Ming Lee, Chi On Chui
  • Patent number: 11610982
    Abstract: A method of forming a semiconductor device includes: forming a dummy gate over a fin, where the fin protrudes above a substrate; surrounding the dummy gate with a dielectric material; and replacing the dummy gate with a replacement gate structure, where replacing the dummy gate includes: forming a gate trench in the dielectric material, where forming the gate trench includes removing the dummy gate; forming a metal-gate stack in the gate trench, where forming the metal-gate stack includes forming a gate dielectric layer, a first work function layer, and a gap-filling material sequentially in the gate trench; and enlarging a volume of the gap-filling material in the gate trench.
    Type: Grant
    Filed: January 4, 2021
    Date of Patent: March 21, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Hsiang Fan, Tsung-Han Shen, Jia-Ming Lin, Wei-Chin Lee, Hsien-Ming Lee, Chi On Chui
  • Publication number: 20230073400
    Abstract: In an embodiment, a method includes: forming a gate dielectric layer on an interface layer; forming a doping layer on the gate dielectric layer, the doping layer including a dipole-inducing element; annealing the doping layer to drive the dipole-inducing element through the gate dielectric layer to a first side of the gate dielectric layer adjacent the interface layer; removing the doping layer; forming a sacrificial layer on the gate dielectric layer, a material of the sacrificial layer reacting with residual dipole-inducing elements at a second side of the gate dielectric layer adjacent the sacrificial layer; removing the sacrificial layer; forming a capping layer on the gate dielectric layer; and forming a gate electrode layer on the capping layer.
    Type: Application
    Filed: November 14, 2022
    Publication date: March 9, 2023
    Inventors: Cheng-Yen Tsai, Ming-Chi Huang, Zoe Chen, Wei-Chin Lee, Cheng-Lung Hung, Da-Yuan Lee, Weng Chang, Ching-Hwanq Su
  • Patent number: 11532509
    Abstract: A method includes forming a gate electrode on a semiconductor region, recessing the gate electrode to generate a recess, performing a first deposition process to form a first metallic layer on the gate electrode and in the recess, wherein the first deposition process is performed using a first precursor, and performing a second deposition process to form a second metallic layer on the first metallic layer using a second precursor different from the first precursor. The first metallic layer and the second metallic layer comprise a same metal. The method further incudes forming a dielectric hard mask over the second metallic layer, and forming a gate contact plug penetrating through the dielectric hard mask. The gate contact plug contacts a top surface of the second metallic layer.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: December 20, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-Chiang Wu, Po-Cheng Chen, Kuo-Chan Huang, Pin-Hsuan Yeh, Wei-Chin Lee, Hsien-Ming Lee, Chien-Hao Chen, Chi On Chui
  • Publication number: 20220367261
    Abstract: A method includes forming a gate electrode on a semiconductor region, recessing the gate electrode to generate a recess, performing a first deposition process to form a first metallic layer on the gate electrode and in the recess, wherein the first deposition process is performed using a first precursor, and performing a second deposition process to form a second metallic layer on the first metallic layer using a second precursor different from the first precursor. The first metallic layer and the second metallic layer comprise a same metal. The method further incudes forming a dielectric hard mask over the second metallic layer, and forming a gate contact plug penetrating through the dielectric hard mask. The gate contact plug contacts a top surface of the second metallic layer.
    Type: Application
    Filed: July 20, 2022
    Publication date: November 17, 2022
    Inventors: Chung-Chiang Wu, Po-Cheng Chen, Kuo-Chan Huang, Pin-Hsuan Yeh, Wei-Chin Lee, Hsien-Ming Lee, Chien-Hao Chen, Chi On Chui
  • Patent number: 11502080
    Abstract: In an embodiment, a method includes: forming a gate dielectric layer on an interface layer; forming a doping layer on the gate dielectric layer, the doping layer including a dipole-inducing element; annealing the doping layer to drive the dipole-inducing element through the gate dielectric layer to a first side of the gate dielectric layer adjacent the interface layer; removing the doping layer; forming a sacrificial layer on the gate dielectric layer, a material of the sacrificial layer reacting with residual dipole-inducing elements at a second side of the gate dielectric layer adjacent the sacrificial layer; removing the sacrificial layer; forming a capping layer on the gate dielectric layer; and forming a gate electrode layer on the capping layer.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: November 15, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Cheng-Yen Tsai, Ming-Chi Huang, Zoe Chen, Wei-Chin Lee, Cheng-Lung Hung, Da-Yuan Lee, Weng Chang, Ching-Hwanq Su
  • Publication number: 20220262685
    Abstract: Embodiments disclosed herein relate to a pre-deposition treatment of materials utilized in metal gates of different transistors on a semiconductor substrate. In an embodiment, a method includes exposing a first metal-containing layer of a first device and a second metal-containing layer of a second device to a reactant to form respective monolayers on the first and second metal-containing layers. The first and second devices are on a substrate. The first device includes a first gate structure including the first metal-containing layer. The second device includes a second gate structure including the second metal-containing layer different from the second metal-containing layer. The monolayers on the first and second metal-containing layers are exposed to an oxidant to provide a hydroxyl group (—OH) terminated surface for the monolayers. Thereafter, a third metal-containing layer is formed on the —OH terminated surfaces of the monolayers on the first and second metal-containing layers.
    Type: Application
    Filed: May 2, 2022
    Publication date: August 18, 2022
    Inventors: Cheng-Yen Tsai, Chung-Chiang Wu, Tai-Wei Hwang, Hung-Chin Chung, Wei-Chin Lee, Da-Yuan Lee, Ching-Hwanq Su, Yin-Chuan Chuang, Kuan-Ting Liu
  • Patent number: 11322411
    Abstract: Embodiments disclosed herein relate to a pre-deposition treatment of materials utilized in metal gates of different transistors on a semiconductor substrate. In an embodiment, a method includes exposing a first metal-containing layer of a first device and a second metal-containing layer of a second device to a reactant to form respective monolayers on the first and second metal-containing layers. The first and second devices are on a substrate. The first device includes a first gate structure including the first metal-containing layer. The second device includes a second gate structure including the second metal-containing layer different from the second metal-containing layer. The monolayers on the first and second metal-containing layers are exposed to an oxidant to provide a hydroxyl group (—OH) terminated surface for the monolayers. Thereafter, a third metal-containing layer is formed on the —OH terminated surfaces of the monolayers on the first and second metal-containing layers.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: May 3, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Yen Tsai, Chung-Chiang Wu, Tai-Wei Hwang, Hung-Chin Chung, Wei-Chin Lee, Da-Yuan Lee, Ching-Hwanq Su, Yin-Chuan Chuang, Kuan-Ting Liu
  • Patent number: 11302582
    Abstract: Embodiments disclosed herein relate to a pre-deposition treatment of materials utilized in metal gates of different transistors on a semiconductor substrate. In an embodiment, a method includes exposing a first metal-containing layer of a first device and a second metal-containing layer of a second device to a reactant to form respective monolayers on the first and second metal-containing layers. The first and second devices are on a substrate. The first device includes a first gate structure including the first metal-containing layer. The second device includes a second gate structure including the second metal-containing layer different from the second metal-containing layer. The monolayers on the first and second metal-containing layers are exposed to an oxidant to provide a hydroxyl group (—OH) terminated surface for the monolayers. Thereafter, a third metal-containing layer is formed on the —OH terminated surfaces of the monolayers on the first and second metal-containing layers.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: April 12, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Yen Tsai, Chung-Chiang Wu, Tai-Wei Hwang, Hung-Chin Chung, Wei-Chin Lee, Da-Yuan Lee, Ching-Hwanq Su, Yin-Chuan Chuang, Kuan-Ting Liu
  • Publication number: 20220085187
    Abstract: A method of forming a semiconductor device includes: forming a dummy gate over a fin, where the fin protrudes above a substrate; surrounding the dummy gate with a dielectric material; and replacing the dummy gate with a replacement gate structure, where replacing the dummy gate includes: forming a gate trench in the dielectric material, where forming the gate trench includes removing the dummy gate; forming a metal-gate stack in the gate trench, where forming the metal-gate stack includes forming a gate dielectric layer, a first work function layer, and a gap-filling material sequentially in the gate trench; and enlarging a volume of the gap-filling material in the gate trench.
    Type: Application
    Filed: January 4, 2021
    Publication date: March 17, 2022
    Inventors: Chih-Hsiang Fan, Tsung-Han Shen, Jia-Ming Lin, Wei-Chin Lee, Hsien-Ming Lee, Chi On Chui
  • Publication number: 20210367076
    Abstract: Semiconductor device structures having gate structures with tunable threshold voltages are provided. Various geometries of device structure can be varied to tune the threshold voltages. In some examples, distances from tops of fins to tops of gate structures can be varied to tune threshold voltages. In some examples, distances from outermost sidewalls of gate structures to respective nearest sidewalls of nearest fins to the respective outermost sidewalls (which respective gate structure overlies the nearest fin) can be varied to tune threshold voltages.
    Type: Application
    Filed: August 9, 2021
    Publication date: November 25, 2021
    Inventors: Chung-Chiang Wu, Wei-Chin Lee, Shih-Hang Chiu, Chia-Ching Lee, Hsueh Wen Tsau, Cheng-Yen Tsai, Cheng-Lung Hung, Da-Yuan Lee, Ching-Hwanq Su
  • Patent number: 11121041
    Abstract: Generally, the present disclosure provides example embodiments relating to tuning threshold voltages in transistor devices and the transistor devices formed thereby. Various examples implementing various mechanisms for tuning threshold voltages are described. In an example method, a gate dielectric layer is deposited over an active area in a device region of a substrate. A dipole layer is deposited over the gate dielectric layer in the device region. A dipole dopant species is diffused from the dipole layer into the gate dielectric layer in the device region.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: September 14, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Zoe Chen, Ching-Hwanq Su, Cheng-Lung Hung, Cheng-Yen Tsai, Da-Yuan Lee, Hsin-Yi Lee, Weng Chang, Wei-Chin Lee
  • Patent number: 11094828
    Abstract: Semiconductor device structures having gate structures with tunable threshold voltages are provided. Various geometries of device structure can be varied to tune the threshold voltages. In some examples, distances from tops of fins to tops of gate structures can be varied to tune threshold voltages. In some examples, distances from outermost sidewalls of gate structures to respective nearest sidewalls of nearest fins to the respective outermost sidewalls (which respective gate structure overlies the nearest fin) can be varied to tune threshold voltages.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: August 17, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Chiang Wu, Wei-Chin Lee, Shih-Hang Chiu, Chia-Ching Lee, Hsueh Wen Tsau, Cheng-Yen Tsai, Cheng-Lung Hung, Da-Yuan Lee, Ching-Hwanq Su
  • Publication number: 20210242081
    Abstract: A method includes forming a gate electrode on a semiconductor region, recessing the gate electrode to generate a recess, performing a first deposition process to form a first metallic layer on the gate electrode and in the recess, wherein the first deposition process is performed using a first precursor, and performing a second deposition process to form a second metallic layer on the first metallic layer using a second precursor different from the first precursor. The first metallic layer and the second metallic layer comprise a same metal. The method further incudes forming a dielectric hard mask over the second metallic layer, and forming a gate contact plug penetrating through the dielectric hard mask. The gate contact plug contacts a top surface of the second metallic layer.
    Type: Application
    Filed: May 27, 2020
    Publication date: August 5, 2021
    Inventors: Chung-Chiang Wu, Po-Cheng Chen, Kuo-Chan Huang, Pin-Hsuan Yeh, Wei-Chin Lee, Hsien-Ming Lee, Chien-Hao Chen, Chi On Chui
  • Publication number: 20210134799
    Abstract: In an embodiment, a method includes: forming a gate dielectric layer on an interface layer; forming a doping layer on the gate dielectric layer, the doping layer including a dipole-inducing element; annealing the doping layer to drive the dipole-inducing element through the gate dielectric layer to a first side of the gate dielectric layer adjacent the interface layer; removing the doping layer; forming a sacrificial layer on the gate dielectric layer, a material of the sacrificial layer reacting with residual dipole-inducing elements at a second side of the gate dielectric layer adjacent the sacrificial layer; removing the sacrificial layer; forming a capping layer on the gate dielectric layer; and forming a gate electrode layer on the capping layer.
    Type: Application
    Filed: December 14, 2020
    Publication date: May 6, 2021
    Inventors: Cheng-Yen Tsai, Ming-Chi Huang, Zoe Chen, Wei-Chin Lee, Cheng-Lung Hung, Da-Yuan Lee, Weng Chang, Ching-Hwanq Su
  • Publication number: 20210098301
    Abstract: Semiconductor devices and methods of manufacturing semiconductor devices with differing threshold voltages are provided. In embodiments the threshold voltages of individual semiconductor devices are tuned through the removal and placement of differing materials within each of the individual gate stacks within a replacement gate process, whereby the removal and placement helps keep the overall process window for a fill material large enough to allow for a complete fill.
    Type: Application
    Filed: December 14, 2020
    Publication date: April 1, 2021
    Inventors: Chung-Chiang Wu, Hsin-Han Tsai, Wei-Chin Lee, Chia-Ching Lee, Hung-Chin Chung, Cheng-Lung Hung, Da-Yuan Lee