Patents by Inventor Wei-Fang Su

Wei-Fang Su has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11716894
    Abstract: A method for preparing a perovskite solar cell is disclosed, which comprises the following steps: providing a first electrode; forming an active layer on the first electrode; and forming a second electrode on the active layer. Herein, the active layer can be prepared by the following steps: mixing a perovskite precursor and a solvent mixture to form a precursor solution, wherein the solvent mixture comprises a first solvent and a second solvent, the first solvent is selected from the group consisting of ?-butyrolactone (GBL), dimethyl sulfoxide (DMSO), 2-methylpyrazine (2-MP), dimethylformamide (DMF), 1-methyl-2-pyrrolidone (NMP), dimethylacetamide (DMAc) and a combination thereof, and the second solvent is an alcohol; and coating the first electrode with the precursor solution and heating the precursor solution to form the active layer.
    Type: Grant
    Filed: July 21, 2021
    Date of Patent: August 1, 2023
    Assignee: NATIONAL TAIWAN UNIVERSITY
    Inventors: Wei-Fang Su, Shih-Han Huang, Yu-Ching Huang
  • Publication number: 20220029098
    Abstract: A method for preparing a perovskite solar cell is disclosed, which comprises the following steps: providing a first electrode; forming an active layer on the first electrode; and forming a second electrode on the active layer. Herein, the active layer can be prepared by the following steps: mixing a perovskite precursor and a solvent mixture to form a precursor solution, wherein the solvent mixture comprises a first solvent and a second solvent, the first solvent is selected from the group consisting of ?-butyrolactone (GBL), dimethyl sulfoxide (DMSO), 2-methylpyrazine (2-MP), dimethylformamide (DMF), 1-methyl-2-pyrrolidone (NMP), dimethylacetamide (DMAc) and a combination thereof, and the second solvent is an alcohol; and coating the first electrode with the precursor solution and heating the precursor solution to form the active layer.
    Type: Application
    Filed: July 21, 2021
    Publication date: January 27, 2022
    Inventors: Wei-Fang Su, Shih-Han Huang, Yu-Ching Huang
  • Publication number: 20200381184
    Abstract: A perovskite solar cell and a method of manufacturing the same are provided. The perovskite solar cell includes a first electrode, a second electrode, an active layer, a hole transporting layer, electron transporting layer, and a passivation layer. The second electrode is disposed opposite to the first electrode. The active layer is disposed between the first electrode and the second electrode, and the active layer includes a perovskite layer. The hole transporting layer is disposed between the first electrode and the active layer. The electron transporting layer is disposed between the second electrode and the active layer. The passivation layer is disposed between the active layer and the electron transporting layer, and the passivation layer includes a dipolar ion having a heteroaryl group.
    Type: Application
    Filed: October 22, 2019
    Publication date: December 3, 2020
    Inventors: Wei-Fang SU, Kai-Chi HSIAO
  • Publication number: 20190092902
    Abstract: A polypeptide copolymer, a preparation method thereof, a porous fibrous scaffold including the same, and a method for nerve regeneration or growth are disclosed. The polypeptide copolymer comprises: a glutamate unit; and a glutamic acid unit, wherein a ratio of a content of the glutamic acid unit to a content of the glutamate unit is in a range from 10:90 to 90:10.
    Type: Application
    Filed: September 26, 2018
    Publication date: March 28, 2019
    Inventors: Wei-Fang SU, Ta-Ching CHEN
  • Publication number: 20180053580
    Abstract: Provided is a polyimide insulation coating, which is prepared by reacting a diacid anhydride compound represented by Formula (I) with a diamine compound represented by Formula (II). By adopting the specific diacid anhydride compound and the specific diamine compound, the synthesized polyimide insulation coating can have a dielectric constant less than 3. Accordingly, the enameled wire having an insulation layer formed from the polyimide insulation coating would not readily produce partial discharge, thereby avoiding the penetrating short-circuit and the damage to the motor.
    Type: Application
    Filed: August 16, 2016
    Publication date: February 22, 2018
    Inventors: WEI-FANG SU, MING-HAN CHIANG, CHI-FENG HUNG, HUI-JU TSAI, YA-TING CHANG, YING-JU LIN, TING-I LU
  • Patent number: 9650495
    Abstract: The invention is related to a manufacturing method for enhancing an ordered structure of block copolymers, and more particularly to a thermal annealing process for block copolymers having conducting polymers and rod segments. The manufacturing method includes the following steps: (A) providing a block copolymer and a small molecule additive, wherein the block copolymer is formed of first monomers containing at least one aromatic ring and second monomers optionally containing at least one aromatic ring; and the small molecule additive is a aliphatic molecule, an aromatic molecule or a combination thereof; (B) blending the block copolymer and the small molecule additive to form a mixture; and (C) treating the mixture with a thermal annealing process to manufacture and facilitate the ordered structure of the block copolymers.
    Type: Grant
    Filed: January 29, 2014
    Date of Patent: May 16, 2017
    Assignee: NATIONAL TAIWAN UNIVERSITY
    Inventors: Wei-Fang Su, Shang-Jung Wu, Chun-Chih Ho
  • Publication number: 20160079552
    Abstract: The present invention relates to a perovskite solar cell, which comprises a first electrode substrate; a perovskite material layer comprising a perovskite organic-inorganic material and a polymer additive, wherein the perovskite material layer is disposed above the first electrode substrate; and a second electrode, which is disposed above the perovskite material layer and corresponds to the first electrode substrate. The coverage of the perovskite material layer on the electrode or an electron-transport layer is significantly improved, and the roughness thereof is also decreased, thereby increasing the photoelectric conversion efficiency of the perovskite solar cell.
    Type: Application
    Filed: May 7, 2015
    Publication date: March 17, 2016
    Inventors: Wei-Fang SU, Chun-Yu CHANG, Cheng-Ya CHU
  • Patent number: 9287422
    Abstract: The present invention discloses a solar cell having a multi-layered structure that is used to generate, transport, and collect electric charges. The multi-layered nanostructure comprises a cathode, a conducting metal layer, a photo-active layer, a hole-transport layer, and an anode. The photo-active layer comprises a tree-like nanostructure array and a conjugate polymer filler. The tree-like nanostructure array is used as an electron acceptor while the conjugate polymer filler is as an electron donor. The tree-like nanostructure array comprises a trunk part and a branch part. The trunk part is formed in-situ on the surface of the conducting metal layer and is used to provide a long straight transport pathway to transport electrons. The large contact area between the branch part and the conjugate polymer filler provides electron-hole separation.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: March 15, 2016
    Assignee: NATIONAL TAIWAN UNIVERSITY
    Inventors: Wei-Fang Su, Chun-Wei Chen, Jih-Jen Wu, Yun-Yue Lin
  • Patent number: 9269840
    Abstract: The present invention discloses a solar cell having a multi-layered structure that is used to generate, transport, and collect electric charges. The multi-layered nanostructure comprises a cathode, a conducting metal layer, a photo-active layer, a hole-transport layer, and an anode. The photo-active layer comprises a tree-like nanostructure array and a conjugate polymer filler. The tree-like nanostructure array is used as an electron acceptor while the conjugate polymer filler is as an electron donor. The tree-like nanostructure array comprises a trunk part and a branch part. The trunk part is formed in-situ on the surface of the conducting metal layer and is used to provide a long straight transport pathway to transport electrons. The large contact area between the branch part and the conjugate polymer filler provides electron-hole separation.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: February 23, 2016
    Assignee: NATIONAL TAIWAN UNIVERSITY
    Inventors: Wei-Fang Su, Chun-Wei Chen, Jih-Jen Wu, Yun-Yue Lin
  • Patent number: 9146222
    Abstract: The system for detecting volatile organic compounds (VOCs) of this present invention comprises a detecting material made by blending a nano-material and a conductive polymer. The system for detecting VOCs presents the property of high sensitivity, high sensing accuracy, quick response, and real-time VOC detecting, and is demonstrated in the present work for commercialization usage. The system for detecting VOCs can be easily operated to detect VOC without electronic detecting method, and hence this invention can reduce a lot of operation energy and procedure. Furthermore, when adding inorganic nanoparticles, the area of VOC exposure of this invention is increased and the molecular morphology variation of the detecting material is enhanced, and hence the detecting activity of the system for detecting VOCs is improved.
    Type: Grant
    Filed: April 11, 2013
    Date of Patent: September 29, 2015
    Assignee: NATIONAL TAIWAN UNIVERSITY
    Inventors: Wei-Fang Su, Che-Pu Hsu, Chun-Fu Lu, Hsueh-Chung Liao, Ming-Chung Wu
  • Publication number: 20150114467
    Abstract: The present invention provides a donor-acceptor alternating conjugated polymer represented by the following chemical formula (1): wherein, X, A, Ra, Rb, Rc, m, p, m?, and n are the same as those defined in the present specification; and a solar cell device manufactured by using the same.
    Type: Application
    Filed: June 25, 2014
    Publication date: April 30, 2015
    Inventors: Wei-Fang SU, Chien-An CHEN, Chun-Yu CHANG, Chun-Chih HO
  • Publication number: 20150118649
    Abstract: The present invention relates to a surface treatment method for an implant, comprising: providing an implant; and forming a ceramic layer on a surface of the implant by atomic layer deposition, wherein the ceramic layer has a thickness of 5-150 nm; a root mean square roughness increase in a range of 15 nm or less; and a friction coefficient of 0.1-0.5. The ceramic layer formed on the surface of the implant can fully encapsulate the surface of the implant with excellent uniformity to effectively block the free metal ions dissociated from the implant. Moreover, it has anti-oxidation and anti-corrosion effects, and greatly enhances the biocompatibility of the implant.
    Type: Application
    Filed: May 20, 2014
    Publication date: April 30, 2015
    Applicant: National Taiwan University
    Inventors: Sheng-Hao HSU, Wan-Yu TSENG, Li-Deh LIN, Ming-Shu LEE, Ming-Hung TSENG, Wei-Fang SU, Feng-Yu TSAI, Min-Huey CHEN
  • Publication number: 20150099835
    Abstract: The invention is related to a manufacturing method for enhancing an ordered structure of block copolymers, and more particularly to a thermal annealing process for block copolymers having conducting polymers and rod segments. The manufacturing method includes the following steps: (A) providing a block copolymer and a small molecule additive, wherein the block copolymer is formed of first monomers containing at least one aromatic ring and second monomers optionally containing at least one aromatic ring; and the small molecule additive is a aliphatic molecule, an aromatic molecule or a combination thereof; (B) blending the block copolymer and the small molecule additive to form a mixture; and (C) treating the mixture with a thermal annealing process to manufacture and facilitate the ordered structure of the block copolymers.
    Type: Application
    Filed: January 29, 2014
    Publication date: April 9, 2015
    Applicant: National Taiwan University
    Inventors: Wei-Fang SU, Shang-Jung WU, Chun-Chih HO
  • Publication number: 20150007891
    Abstract: A polymer solar cell is disclosed, which comprises: a substrate, made of a transparent glass material; a transparent bottom electrode, disposed on the substrate; a hole transport layer, arranged on the bottom electrode by the use of a solution process, such as spin coating or spray printing; and an active layer, arranged on the hole transport layer and provided to be doped with a trace concentration of nanoparticles, that is acting as additives; wherein, after being doped with the nanoparticles and treated by an annealing treatment, the power conversion efficiency of the active layer is enhanced.
    Type: Application
    Filed: July 3, 2013
    Publication date: January 8, 2015
    Inventors: WEI-FANG SU, HSUEH-CHUNG LIAO, TSUNG-HAN LIN, CHIH-MIN CHUANG
  • Publication number: 20140103231
    Abstract: The system for detecting volatile organic compounds (VOCs) of this present invention comprises a detecting material made by blending a nano-material and a conductive polymer. The system for detecting VOCs presents the property of high sensitivity, high sensing accuracy, quick response, and real-time VOC detecting, and is demonstrated in the present work for commercialization usage. The system for detecting VOCs can be easily operated to detect VOC without electronic detecting method, and hence this invention can reduce a lot of operation energy and procedure. Furthermore, when adding inorganic nanoparticles, the area of VOC exposure of this invention is increased and the molecular morphology variation of the detecting material is enhanced, and hence the detecting activity of the system for detecting VOCs is improved.
    Type: Application
    Filed: April 11, 2013
    Publication date: April 17, 2014
    Applicant: National Taiwan University
    Inventors: Wei-Fang Su, Che-Pu Hsu, Chun-Fu Lu, Hsueh-Chung Liao, Ming-Chung Wu
  • Patent number: 8502068
    Abstract: The present invention discloses a solar cell having a multi-layered structure that is used to generate, transport, and collect electric charges. The multi-layered nanostructure comprises a cathode, a conducting metal layer, a photo-active layer, a hole-transport layer, and an anode. The photo-active layer comprises a tree-like nanostructure array and a conjugate polymer filler. The tree-like nanostructure array is used as an electron acceptor while the conjugate polymer filler is as an electron donor. The tree-like nanostructure array comprises a trunk part and a branch part. The trunk part is formed in-situ on the surface of the conducting metal layer and is used to provide a long straight transport pathway to transport electrons. The large contact area between the branch part and the conjugate polymer filler provides electron-hole separation.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: August 6, 2013
    Assignee: National Taiwan University
    Inventors: Wei-Fang Su, Chun-Wei Chen, Jih-Jen Wu, Yun-Yue Lin
  • Patent number: 8309632
    Abstract: The invention provides an epoxy nanocomposite material for dental therapy, which can be applied to direct or indirect clinical restoration, dental core-post system, and dental brace etc. The epoxy nanocomposite filling material provided by the invention can be polymerized with various curing agents to form the polymer with low shrinkage.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: November 13, 2012
    Assignee: National Taiwan University
    Inventors: Wei-Fang Su, Sheng-Hao Hsu, Yun-Yuan Tai, Min-Huey Chen
  • Publication number: 20120214274
    Abstract: The present invention discloses a solar cell having a multi-layered structure that is used to generate, transport, and collect electric charges. The multi-layered nanostructure comprises a cathode, a conducting metal layer, a photo-active layer, a hole-transport layer, and an anode. The photo-active layer comprises a tree-like nanostructure array and a conjugate polymer filler. The tree-like nanostructure array is used as an electron acceptor while the conjugate polymer filler is as an electron donor. The tree-like nanostructure array comprises a trunk part and a branch part. The trunk part is formed in-situ on the surface of the conducting metal layer and is used to provide a long straight transport pathway to transport electrons. The large contact area between the branch part and the conjugate polymer filler provides electron-hole separation.
    Type: Application
    Filed: May 3, 2012
    Publication date: August 23, 2012
    Applicant: National Taiwan University
    Inventors: WEI-FANG SU, CHUN-WEI CHEN, JIH-JEN WU, YUN-YUE LIN
  • Publication number: 20120211070
    Abstract: The present invention discloses a solar cell having a multi-layered structure that is used to generate, transport, and collect electric charges. The multi-layered nanostructure comprises a cathode, a conducting metal layer, a photo-active layer, a hole-transport layer, and an anode. The photo-active layer comprises a tree-like nanostructure array and a conjugate polymer filler. The tree-like nanostructure array is used as an electron acceptor while the conjugate polymer filler is as an electron donor. The tree-like nanostructure array comprises a trunk part and a branch part. The trunk part is formed in-situ on the surface of the conducting metal layer and is used to provide a long straight transport pathway to transport electrons. The large contact area between the branch part and the conjugate polymer filler provides electron-hole separation.
    Type: Application
    Filed: April 26, 2012
    Publication date: August 23, 2012
    Applicant: National Taiwan University
    Inventors: WEI-FANG SU, CHUN-WEI CHEN, JIH-JEN WU, YUN-YUE LIN
  • Publication number: 20120208316
    Abstract: The present invention discloses a solar cell having a multi-layered structure that is used to generate, transport, and collect electric charges. The multi-layered nanostructure comprises a cathode, a conducting metal layer, a photo-active layer, a hole-transport layer, and an anode. The photo-active layer comprises a tree-like nanostructure array and a conjugate polymer filler. The tree-like nanostructure array is used as an electron acceptor while the conjugate polymer filler is as an electron donor. The tree-like nanostructure array comprises a trunk part and a branch part. The trunk part is formed in-situ on the surface of the conducting metal layer and is used to provide a long straight transport pathway to transport electrons. The large contact area between the branch part and the conjugate polymer filler provides electron-hole separation.
    Type: Application
    Filed: April 26, 2012
    Publication date: August 16, 2012
    Applicant: National Taiwan University
    Inventors: WEI-FANG SU, Chun-Wei Chen, Jih-Jen Wu, Yun-Yue Lin