Patents by Inventor Wei-Feng Lin

Wei-Feng Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230301075
    Abstract: A semiconductor structure including a semiconductor substrate and at least one patterned dielectric layer is provided. The semiconductor substrate includes a semiconductor portion, at least one first device, at least one second device and at least one first dummy ring. The at least one first device is disposed on a first region surrounded by the semiconductor portion. The at least one second device and the at least one first dummy ring are disposed on a second region, and the second region surrounds the first region. The at least one patterned dielectric layer covers the semiconductor substrate.
    Type: Application
    Filed: May 25, 2023
    Publication date: September 21, 2023
    Inventors: Meng-Han Lin, Te-Hsin Chiu, Wei-Cheng Wu, Li-Feng Teng, Chien-Hung Chang
  • Publication number: 20230274432
    Abstract: A brain tumor types distinguish system includes an image outputting device and a server computing device. The image outputting device outputs at least three brain images captured from the position of a brain tumor. The server computing device pre-stores a plurality of distinguish pathways corresponding to different types of brain tumors. The server computing device includes an image receiving module, an image pre-processing module, a data comparison module and a distinguish module. The image receiving module receives the brain images. The image pre-processing module pre-processes the brain images to obtain corresponding processed images thereof. The data comparison module compares the brain images and the processed images with the distinguish pathways to obtain at least three comparison results. The distinguish module statistically analyzes the comparison results to obtain a distinguish result.
    Type: Application
    Filed: August 16, 2022
    Publication date: August 31, 2023
    Inventors: Cheng-Chia LEE, Huai-Che YANG, Wen-Yuh CHUNG, Chih-Chun WU, Wan-Yuo GUO, Ya-Xuan YANG, Tzu-Hsuan HUANG, Chun-Yi LIN, Wei-Kai LEE, Chia-Feng LU, Yu-Te WU
  • Publication number: 20230262310
    Abstract: An electronic camera assembly includes a camera chip cube bonded to camera bondpads of an interposer; at least one light-emitting diode (LED) bonded to LED bondpads of the interposer at the same height as the camera bondpads; and a housing extending from the interposer and LEDs to the height of the camera chip cube, with light guides extending from the LEDs through the housing to a top of the housing. In embodiments, the electronic camera assembly includes a cable coupled to the interposer. In typical embodiments the camera chip cube has footprint dimensions of less than three and a half millimeters square.
    Type: Application
    Filed: February 17, 2022
    Publication date: August 17, 2023
    Inventors: Teng-Sheng CHEN, Wei-Ping CHEN, Jau-Jan DENG, Wei-Feng LIN
  • Publication number: 20230216173
    Abstract: An electronic device and an antenna structure are provided. The electronic device includes a metal housing, a partition wall, a first antenna module, and a second antenna module. The metal housing has a T-shaped slot. The slot includes an opening end, a first closed end, and a second closed end. The partition wall is connected with the metal housing. The first antenna module has a first feeding element and a radiating element. The second antenna module has a second feeding element and an antenna array. The first antenna module and the second antenna module are respectively disposed on two sides of the partition wall, and the first antenna module is closer to the opening end than the second antenna module.
    Type: Application
    Filed: June 8, 2022
    Publication date: July 6, 2023
    Inventors: Hsuan-Jui CHANG, Hsieh-Chih LIN, Guan-Ren SU, Wei-Shan CHANG, Yi-Feng WU, Shang-Sian YOU
  • Publication number: 20230203474
    Abstract: A compound, a solid carrier including the same and a method for preparing a nucleic acid are provided. The compound has a structure represented by Formula (1) as follows. In Formula (1), the definition of Y1, Y2, Z and * are the same as defined in the detailed description.
    Type: Application
    Filed: December 26, 2022
    Publication date: June 29, 2023
    Applicant: Industrial Technology Research Institute
    Inventors: Ming-Chun Lin, Hui-Ling Cheng, Chun-Ting Lai, Hua-Cheng Chou, Wei-Chin Huang, Chih-Hung Chen, Shu-Feng Chen
  • Patent number: 11686715
    Abstract: A mobile power device capable of detecting gas is disclosed and includes a main body, a gas detection module, a driving and controlling board, a power module and a microprocessor. The main body includes a ventilation opening, a connection port and an accommodation chamber. The ventilation opening is in communication with the accommodation chamber. The gas detection module and the driving and controlling board are disposed within the accommodation chamber. The gas detection module, the power module and the microprocessor are fixed on and electrically connected to the driving and controlling board. The power module is capable of storing an electric energy and outputting the electric energy outwardly. The microprocessor enables the gas detection module to detect and operate. The microprocessor converts the detection information of the gas detection module into a detection data, which is stored and transmitted to the mobile device or an external device.
    Type: Grant
    Filed: September 10, 2020
    Date of Patent: June 27, 2023
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Hao-Jan Mou, Ching-Sung Lin, Chin-Chuan Wu, Chih-Kai Chen, Yung-Lung Han, Chi-Feng Huang, Wei-Ming Lee
  • Patent number: 11666234
    Abstract: A blood pressure measurement module includes a base, a valve plate, a top cover, a micro pump, a driving circuit board, and a pressure sensor. The valve plate is disposed between the base and the top cover. The micro pump is in the base. The pressure sensor is disposed on the driving circuit board. An inlet channel of the top cover and the pressure sensor are connected to a gas bag. The micro pump operates to inflate the gas bag to press the skin of a user. The pressure sensor detects a pressure change in the gas bag so as to detect the blood pressure of the user.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: June 6, 2023
    Assignee: MICROJET TECHNOLOGY CO., LTD.
    Inventors: Hao-Jan Mou, Ching-Sung Lin, Wen-Yang Yang, Yung-Lung Han, Chi-Feng Huang, Chang-Yen Tsai, Wei-Ming Lee
  • Publication number: 20230136491
    Abstract: A curved-surface image-sensor assembly has a porous carrier having a concave surface with a thinned image sensor bonded by an adhesive to its concave surface of the porous carrier; the porous carrier is mounted into a water-resistant package. The sensor assembly is made by fabricating a thinned, flexible, image-sensor integrated circuit (IC) and applying adhesive to a non-illuminated side of the IC; positioning the IC over a concave surface of a porous carrier; applying vacuum through the porous carrier to suck the IC onto the concave surface of the porous carrier; and curing the adhesive to bond the IC to the concave surface of the porous carrier.
    Type: Application
    Filed: November 2, 2021
    Publication date: May 4, 2023
    Inventors: Chun-Sheng FAN, Wei-Feng LIN
  • Publication number: 20230122722
    Abstract: A cavity interposer has a cavity, first bondpads adapted to couple to a chip-type camera cube disposed within a base of the cavity at a first level, the first bondpads coupled through feedthroughs to second bondpads at a base of the interposer at a second level; and third bondpads adapted to couple to a light-emitting diode (LED), the third bondpads at a third level. The third bondpads coupled to fourth bondpads at the base of the interposer at the second level; and the second and fourth bondpads couple to conductors of a cable with the first, second, and third level different. An endoscope optical includes the cavity interposer an LED, and a chip-type camera cube electrically bonded to the first bondpads; the LED is bonded to the third bondpads; and a top of the chip-type camera cube and a top of the LED are at a same level.
    Type: Application
    Filed: October 18, 2021
    Publication date: April 20, 2023
    Inventors: Teng-Sheng CHEN, Wei-Ping CHEN, Jau-Jan DENG, Wei-Feng LIN, Chun-Sheng FAN
  • Publication number: 20230118866
    Abstract: A cavity interposer has a cavity, first bondpads adapted to couple to a chip-type camera cube disposed within a base of the cavity at a first level, the first bondpads coupled through feedthroughs to second bondpads at a base of the interposer at a second level; and third bondpads adapted to couple to a light-emitting diode (LED), the third bondpads at a third level. The third bondpads coupled to fourth bondpads at the base of the interposer at the second level; and the second and fourth bondpads couple to conductors of a cable with the first, second, and third level different. An endoscope optical includes the cavity interposer an LED, and a chip-type camera cube electrically bonded to the first bondpads; the LED is bonded to the third bondpads; and a top of the chip-type camera cube and a top of the LED are at a same level.
    Type: Application
    Filed: May 18, 2022
    Publication date: April 20, 2023
    Inventors: Teng-Sheng CHEN, Wei-Ping CHEN, Wei-Feng LIN, Jau-Jan DENG
  • Patent number: 11626434
    Abstract: A method of image sensor package fabrication includes forming a recess in a transparent substrate, depositing conductive traces in the recess, inserting an image sensor in the recess so that the image sensor is positioned in the recess to receive light through the transparent substrate, and inserting a circuit board in the recess so that the image sensor is positioned between the transparent substrate and the circuit board.
    Type: Grant
    Filed: November 18, 2021
    Date of Patent: April 11, 2023
    Assignee: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Wei-Feng Lin, Ying-Chih Kuo, Ying Chung
  • Publication number: 20230076598
    Abstract: An image sensor module comprises an image sensor having a light sensing area, a cover glass for covering the light sensing area, a dam between the image sensor and the cover glass, which surrounds the light sensing area, and has an outer wall and an inner wall, where a cross-section of the inner wall parallel to the surface of the light sensing area of the image sensor forms a sawtooth pattern and/or, where a cross-section of the inner wall orthogonal to the surface of the light sensing area of the image sensor forms an inclined surface.
    Type: Application
    Filed: October 26, 2022
    Publication date: March 9, 2023
    Applicant: OmniVision Technologies, Inc.
    Inventors: Wei-Feng Lin, En-Chi Li, Chi-Chih Huang
  • Patent number: 11583171
    Abstract: A surface-mount device platform includes a surface-mounting region, a connection region, and a bendable region therebetween, each including a respective part of a base substrate. The base substrate includes electrically-conductive layers interspersed with electrically-insulating build-up layers. Each of the surface-mounting region, the connection region, and the bendable region spans between a bottom substrate-surface and a top substrate-surface of the base substrate. The surface-mounting region further includes an electrically-insulating first top rigid-layer, and device bond-pads exposed on a top surface of the first top rigid-layer facing away from the top substrate-surface in the surface-mounting region.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: February 21, 2023
    Assignee: OmniVision Technologies, Inc.
    Inventors: Teng-Sheng Chen, Chien-Chan Yeh, Cheng-Fang Chiu, Wei-Feng Lin
  • Patent number: 11562928
    Abstract: A chip comprises a semiconductor substrate having a first side and a second side opposite to the first side, a plurality of conductive metal patterns formed on the first side of the semiconductor substrate, a plurality of solder balls formed on the first side of the semiconductor substrate, and at least one code pattern formed using laser marking on the first side of the semiconductor substrate in a space free from the plurality of conductive metal patterns and the plurality of solder balls, wherein the at least one code pattern is visible from a backside of the chip, the at least one code pattern represents a binary number having four bits; and the binary number represents a decimal number to represent a tracing number of the chip.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: January 24, 2023
    Assignee: OmniVision Technologies, Inc.
    Inventors: Wei-Feng Lin, Chi-Chih Huang
  • Patent number: 11520197
    Abstract: An active-pixel device assembly with stray-light reduction includes an active-pixel device including a semiconductor substrate and an array of active pixels, a light-transmissive substrate disposed on a light-receiving side of the active-pixel device, and a rough opaque coating disposed on a first surface of the light-transmissive substrate and forming an aperture aligned with the array of active pixels, wherein the rough opaque coating is rough so as to suppress reflection of light incident thereon from at least one side. A method for manufacturing a stray-light-reducing coating for an active-pixel device assembly includes depositing an opaque coating on a light-transmissive substrate such that the opaque coating forms a light-transmissive aperture, and roughening the opaque coating to form a rough opaque coating, said roughening including treating the opaque coating with an alkaline solution.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: December 6, 2022
    Assignee: OmniVision Technologies, Inc.
    Inventors: Chun-Sheng Fan, Wei-Feng Lin
  • Patent number: 11515347
    Abstract: An image sensor module comprises an image sensor having a light sensing area, a cover glass for covering the light sensing area, a dam between the image sensor and the cover glass, which surrounds the light sensing area, and has an outer wall and an inner wall, where a cross-section of the inner wall parallel to the surface of the light sensing area of the image sensor forms a sawtooth pattern and/or, where a cross-section of the inner wall orthogonal to the surface of the light sensing area of the image sensor forms an inclined surface.
    Type: Grant
    Filed: January 20, 2020
    Date of Patent: November 29, 2022
    Assignee: OmniVision Technologies, Inc.
    Inventors: Wei-Feng Lin, En-Chi Li, Chi-Chih Huang
  • Patent number: 11404844
    Abstract: A semiconductor structure is provided. The semiconductor structure includes: a substrate having a cavity recessed from a top surface of the substrate toward a bottom surface of the substrate opposite to the top surface, wherein the cavity has a sidewall and a bottom surface, and the bottom surface of the cavity is substantially parallel to the top surface of the substrate; a light source structure in the cavity, and the light source structure emitting a light from a sidewall of the light source structure; and a diffractive optical element (DOE) over the top surface of the substrate; wherein the sidewall of the cavity is a sloped surface, so that when the light is incident on the sidewall, the sloped surface reflects the incident light to generate a reflected light toward the DOE. Associated semiconductor structure and manufacturing method are also disclosed.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: August 2, 2022
    Assignee: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Chun-Sheng Fan, Wei-Feng Lin
  • Patent number: 11320663
    Abstract: A diffractive optical element (DOE) comprises a first part comprising a first transparent non-conductive base and a first transparent conductive layer disposed on the first transparent non-conductive base and a second part comprising a second transparent non-conductive base and a second transparent conductive layer disposed on the second transparent non-conductive base. The first transparent conductive layer and the second transparent conductive layer have periodical patterns of thickness for diffracting light. Spacers separate the first part and the second part. The first part and the second part are positioned such that the first transparent conductive layer is facing the second transparent conductive layer. A first end of the first transparent conductive layer is electrically connected to a first terminal of a capacitance monitor, and a second end of the second transparent conductive layer is electrically connected to a second terminal of the capacitance monitor.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: May 3, 2022
    Assignee: Omni Vision Technologies, Inc.
    Inventors: Chun-Sheng Fan, Wei-Feng Lin
  • Publication number: 20220077210
    Abstract: A method of image sensor package fabrication includes forming a recess in a transparent substrate, depositing conductive traces in the recess, inserting an image sensor in the recess so that the image sensor is positioned in the recess to receive light through the transparent substrate, and inserting a circuit board in the recess so that the image sensor is positioned between the transparent substrate and the circuit board.
    Type: Application
    Filed: November 18, 2021
    Publication date: March 10, 2022
    Inventors: Wei-Feng Lin, Ying-Chih Kuo, Ying Chung
  • Patent number: 11211414
    Abstract: An image sensor package includes a transparent substrate with a recess formed in the transparent substrate, and an image sensor positioned in the recess so that light incident on the transparent substrate passes through the transparent substrate to the image sensor. The image sensor package also includes a circuit board electrically disposed in the recess and coupled to receive image data from the image sensor, and the image sensor is positioned in the recess between the circuit board and the transparent substrate.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: December 28, 2021
    Assignee: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Wei-Feng Lin, Ying-Chih Kuo, Ying Chung