Patents by Inventor Wei-Ting Chang

Wei-Ting Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240162318
    Abstract: A thin film transistor includes a gate electrode embedded in an insulating layer that overlies a substrate, a gate dielectric overlying the gate electrode, an active layer comprising a compound semiconductor material and overlying the gate dielectric, and a source electrode and drain electrode contacting end portions of the active layer. The gate dielectric may have thicker portions over interfaces with the insulating layer to suppress hydrogen diffusion therethrough. Additionally or alternatively, a passivation capping dielectric including a dielectric metal oxide material may be interposed between the active layer and a dielectric layer overlying the active layer to suppress hydrogen diffusion therethrough.
    Type: Application
    Filed: January 26, 2024
    Publication date: May 16, 2024
    Inventors: Min-Kun DAI, Wei-Gang CHIU, I-Cheng CHANG, Cheng-Yi WU, Han-Ting TSAI, Tsann LIN, Chung-Te LIN
  • Patent number: 11982798
    Abstract: A projection lens includes a first lens group, a second lens group and an aperture stop. The first lens group is disposed between a reduced side and a magnified side. The second lens is disposed between the first lens group and the magnified side. The second lens group has a light incident surface, a reflective surface and a light emitting surface, the light incident surface faces the first lens group, the light emitting surface faces a projection surface, the light incident surface, the light emitting surface and the first lens group are disposed at a single side of the reflective surface, and at least one of the light incident surface, the reflective surface and the light emitting surface is a freeform surface. The aperture stop is disposed between the first lens group and the second lens group. Moreover, a projection apparatus including the projection lens is also provided.
    Type: Grant
    Filed: November 5, 2021
    Date of Patent: May 14, 2024
    Assignee: Coretronic Corporation
    Inventors: Hsin-Hsiang Lo, Wei-Ting Wu, Fu-Ming Chuang, Chuan-Chung Chang, Ching-Chuan Wei
  • Publication number: 20240153842
    Abstract: A semiconductor structure includes a die embedded in a molding material, the die having die connectors on a first side; a first redistribution structure at the first side of the die, the first redistribution structure being electrically coupled to the die through the die connectors; a second redistribution structure at a second side of the die opposing the first side; and a thermally conductive material in the second redistribution structure, the die being interposed between the thermally conductive material and the first redistribution structure, the thermally conductive material extending through the second redistribution structure, and the thermally conductive material being electrically isolated.
    Type: Application
    Filed: January 4, 2024
    Publication date: May 9, 2024
    Inventors: Hao-Jan Pei, Wei-Yu Chen, Chia-Shen Cheng, Chih-Chiang Tsao, Cheng-Ting Chen, Chia-Lun Chang, Chih-Wei Lin, Hsiu-Jen Lin, Ching-Hua Hsieh, Chung-Shi Liu
  • Publication number: 20240113214
    Abstract: Semiconductor structures and methods for manufacturing the same are provided. The semiconductor structure includes a first channel member suspended over a substrate and a second channel member suspended over the first channel member and spaced apart from the first channel member along a first direction. The semiconductor structure also includes a gate structure wrapping around the first channel member and the second channel member and a dielectric structure encircled by the first channel member, the second channel member, the gate structure, and the source/drain structure. In addition, the dielectric structure includes a porous material or an air gap. The semiconductor structure also includes a first epitaxial layer attached to the first channel member, and the first epitaxial layer has a first extending portion protruding from a bottom surface of the first channel member along the first direction and extending into the dielectric structure.
    Type: Application
    Filed: March 3, 2023
    Publication date: April 4, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Che-Lun Chang, Kuan-Ting Pan, Wei-Yang Lee
  • Publication number: 20240105806
    Abstract: Semiconductor structures and methods of forming the same are provided. In an embodiment, an exemplary semiconductor structure includes a vertical stack of channel members disposed over a substrate, a gate structure wrapping around each channel member of the vertical stack of channel members, a source/drain feature coupled to the vertical stack of channel members and adjacent the gate structure; and a dielectric feature disposed between the source/drain feature and the substrate, in a cross-sectional view, the dielectric feature includes a V-shape sidewall surface.
    Type: Application
    Filed: March 9, 2023
    Publication date: March 28, 2024
    Inventors: Che-Lun Chang, Kuan-Ting Pan, Wei-Yang Lee
  • Publication number: 20240098492
    Abstract: During operation, an access point may provide a first WLAN and a second WLAN, where the first WLAN uses a WPA2-compatible authentication protocol and the second WLAN uses a WPA3-compatible authentication protocol. In response to an association request or a probe request associated with (or from) an electronic device, the access point may establish a connection with the electronic device using the first WLAN. Then, the access point may confirm, with a computer system, that a binding between a passphrase associated with the electronic device and the second WLAN exists. Alternatively, when the binding does not exist, the access point may establish the binding in the computer system. Next, the access point may perform a BSS transition of the electronic device from the first WLAN to the second WLAN.
    Type: Application
    Filed: September 6, 2023
    Publication date: March 21, 2024
    Applicant: ARRIS Enterprises LLC
    Inventors: Wei-Sheng Hsu, Yu-Ting Chang, Weichih Huang, Kuan-Hsun Peng, Weiguo Xie, Christopher Mohammed, Shannon Moyes Clark, Siddhartha Datta, David Burns
  • Patent number: 11935935
    Abstract: A thin film transistor includes a gate electrode embedded in an insulating layer that overlies a substrate, a gate dielectric overlying the gate electrode, an active layer comprising a compound semiconductor material and overlying the gate dielectric, and a source electrode and drain electrode contacting end portions of the active layer. The gate dielectric may have thicker portions over interfaces with the insulating layer to suppress hydrogen diffusion therethrough. Additionally or alternatively, a passivation capping dielectric including a dielectric metal oxide material may be interposed between the active layer and a dielectric layer overlying the active layer to suppress hydrogen diffusion therethrough.
    Type: Grant
    Filed: November 11, 2021
    Date of Patent: March 19, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Min-Kun Dai, Wei-Gang Chiu, I-Cheng Chang, Cheng-Yi Wu, Han-Ting Tsai, Tsann Lin, Chung-Te Lin
  • Patent number: 11926678
    Abstract: Disclosed herein are composite polypeptide. According to various embodiments, the composite polypeptide includes a parent polypeptide and a metal binding motif capable of forming a complex with a metal cation. The composite polypeptide may be conjugated with a linker unit having a plurality of functional elements to form a multi-functional molecular construct. Alternatively, multiple composite polypeptides may be conjugated to a linker unit to form a molecular construct, or a polypeptide bundle. Linker units suitable for conjugating with the composite polypeptide having the metal binding motif are also disclosed.
    Type: Grant
    Filed: October 8, 2021
    Date of Patent: March 12, 2024
    Assignee: Immunwork Inc.
    Inventors: Tse-Wen Chang, Hsing-Mao Chu, Wei-Ting Tian, Yueh-Hsiang Yu
  • Publication number: 20240079315
    Abstract: Improved control of via anchor profiles in metals at a contact layer can be achieved by slowing down an anchor etching process and by introducing a passivation operation. By first passivating a metallic surface, etchants can be prevented from dispersing along grain boundaries, thereby distorting the shape of the via anchor. An iterative scheme that involves multiple cycles of alternating passivation and etching operations can control the formation of optimal via anchor profiles. When a desirable anchor shape is achieved, the anchor maintains structural integrity of the vias, thereby improving reliability of the interconnect structure.
    Type: Application
    Filed: September 1, 2022
    Publication date: March 7, 2024
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chi-Shin WANG, Yu-Hsiang Wang, Wei-Ting Chang, Fan-Yi Hsu
  • Publication number: 20240079486
    Abstract: A semiconductor structure includes a barrier layer over a channel layer, and a doped layer over the barrier layer. A gate electrode is over the doped layer and a doped interface layer is formed between the barrier layer and the doped layer. The doped interface layer includes a dopant and a metal. The metal has a metal concentration that follows a gradient function from a highest metal concentration to a lowest metal concentration.
    Type: Application
    Filed: March 27, 2023
    Publication date: March 7, 2024
    Inventors: Wei-Ting CHANG, Ching Yu CHEN, Jiang-He XIE
  • Publication number: 20240055300
    Abstract: A method includes forming a fin structure over a substrate; depositing a dummy gate layer over the substrate and the fin structure; depositing a hard mask stack over the dummy gate layer; depositing a photoresist bottom layer over the hard mask stack, wherein the photoresist bottom layer has a first stress; performing an implantation process to the photoresist bottom layer to form an implanted bottom layer with a second stress closer to 0 than the first stress; patterning the implanted bottom layer; patterning the hard mask stack and the dummy gate layer by using the patterned implanted bottom layer as an etch mask to form a dummy gate structure over the fin structure; and replacing the dummy gate structure with a metal gate structure.
    Type: Application
    Filed: August 12, 2022
    Publication date: February 15, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wei-Ting CHANG, Kuo-Ju CHEN, Tien-Shun CHANG, Su-Hao LIU, Huicheng CHANG
  • Publication number: 20240030312
    Abstract: A method includes forming a fin structure over a substrate; depositing a dummy gate layer over the substrate and the fin structure; etching back the dummy gate layer; performing an implantation process to the dummy gate layer to form an implantation region in the dummy gate layer, wherein a vertical thickness of the dummy gate layer is greater than a vertical thickness of the implantation region; forming a patterned hard mask stack over the implantation region; patterning the implantation region and the dummy gate layer by using the patterned hard mask stack as an etch mask to form a dummy gate structure over the fin structure; and replacing the dummy gate structure with a metal gate structure.
    Type: Application
    Filed: July 22, 2022
    Publication date: January 25, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kuo-Ju CHEN, Wei-Ting CHANG, Po-Kang HO, Su-Hao LIU, Yee-Chia YEO
  • Patent number: 11843042
    Abstract: Structures and methods for controlling dopant diffusion and activation are disclosed. In one example, a semiconductor structure is disclosed. The semiconductor structure includes: a channel layer; a barrier layer over the channel layer; a gate electrode over the barrier layer; and a doped layer formed between the barrier layer and the gate electrode. The doped layer includes (a) an interface layer in contact with the barrier layer and (b) a main layer between the interface layer and the gate electrode. The doped layer comprises a dopant whose doping concentration in the interface layer is lower than that in the main layer.
    Type: Grant
    Filed: August 18, 2021
    Date of Patent: December 12, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ching-Yu Chen, Wei-Ting Chang, Yu-Shine Lin, Jiang-He Xie
  • Publication number: 20230387282
    Abstract: A method of manufacturing a High-Electron-Mobility Transistor (HEMT) includes: preparing a substrate; forming a first buffer over the substrate; forming a second buffer over the first buffer, wherein forming the second buffer includes doping a first thickness of a material such as gallium nitride (GaN) with a first concentration of a dopant such as carbon, and doping a second thickness of the material with a second concentration of the dopant such that the second concentration of dopant has a gradient though the second thickness which progressively decreases in a direction away from the first thickness; forming a channel layer such as a GaN channel over the second buffer; forming a barrier layer such as aluminum gallium nitride (AlGaN) over the channel layer; and forming drain, source and gate terminals for the HEMT.
    Type: Application
    Filed: May 25, 2022
    Publication date: November 30, 2023
    Inventors: Pravanshu Mohanta, Wei-Ting Chang, Ching Yu Chen, Jiang-He Xie
  • Publication number: 20230196568
    Abstract: Embodiments of the disclosure provide an angiography image determination method and an angiography image determination device. The method includes: obtaining a plurality of first images of a body part injected with a contrast medium; obtaining a plurality of corresponding second images by performing a first image preprocessing operation on each first image; obtaining a pixel statistical characteristic of each second image; finding a candidate image based on the pixel statistical characteristic of each second image; and finding a reference image corresponding to the candidate image among the plurality of first images.
    Type: Application
    Filed: December 15, 2022
    Publication date: June 22, 2023
    Applicant: COMPAL ELECTRONICS, INC.
    Inventors: Chieh-Hung Chang, Yuan-Hsing Hsu, Jen-Sheng Huang, Nien-Lun Chen, Shih-Hsu Huang, Kun-Sung Chen, Chun-Te Shen, Wei-Ting Chang, Kuo-Ting Tang, Zhih-Cherng Chen
  • Publication number: 20230058607
    Abstract: A chip-on-board module is provided. The chip-on-board module includes a chip and a substrate. The chip includes a plurality of chip contacts. The substrate includes a plurality of first leads and a plurality of second leads. The first leads and the second leads are coupled to a portion of the chip contacts. The first leads are arranged along a first axis. The second leads are arranged along a second axis. A first axis included angle is formed between the first axis and the second axis, and the first axis included angle is between 100° and 170°.
    Type: Application
    Filed: August 12, 2022
    Publication date: February 23, 2023
    Applicant: Winbond Electronics Corp.
    Inventors: Yen-Ling CHOU, Bo-Ren CHI, Wei-Ting CHANG
  • Publication number: 20230008413
    Abstract: A method includes forming a fin protruding from a semiconductor substrate; forming a dummy gate stack over the fin, wherein forming the dummy gate stack includes depositing a layer of amorphous material over the fin; performing an anneal process on the layer of amorphous material, wherein the anneal process recrystallizes the layer of amorphous material into a layer of polycrystalline material, wherein the anneal process includes heating the layer of amorphous material for less than one millisecond; and patterning the layer of polycrystalline material; and forming an epitaxial source/drain region in the fin adjacent the dummy gate stack; and removing the dummy gate stack and replacing the dummy gate stack with a replacement gate stack.
    Type: Application
    Filed: February 16, 2022
    Publication date: January 12, 2023
    Inventors: Po-Kang Ho, Kuo-Ju Chen, Wei-Ting Chang, Wei-Fu Wang, Li-Ting Wang, Huicheng Chang, Yee-Chia Yeo, Yi-Chao Wang, Tsai-Yu Huang
  • Publication number: 20220184152
    Abstract: Disclosed herein is a composition for modulating immunity, comprising Lactobacillus paracasei LT12, ?-glucan, and Bovine Colostrum Powder. Also provided is a method for modulating immunity, comprising administering to a subject in need a therapeutically effective amount of the composition, wherein the method is to enhance the expression of IL-6, IL-10, TNF-? and TGF-?1.
    Type: Application
    Filed: December 13, 2021
    Publication date: June 16, 2022
    Applicant: Lytone Enterprise, Inc.
    Inventors: Chia-Shin HO, Wei-Ting CHANG, Wei-Ting TSENG, Tien-Hung CHANG
  • Publication number: 20210393730
    Abstract: Provided herein is a pharmaceutical composition comprising 1-2 part by weight of Schisandra chinensis powder and 5-10 part by weight of extract of Psidium guajava L. The composition can be used in the treatment of reducing blood uric acid, protecting pancreatic beta cell, and reducing body fat.
    Type: Application
    Filed: June 16, 2021
    Publication date: December 23, 2021
    Applicant: LYTONE ENTERPRISE, INC.
    Inventors: William Tien-hung CHANG, Wei-ting CHANG
  • Publication number: 20210376118
    Abstract: Structures and methods for controlling dopant diffusion and activation are disclosed. In one example, a semiconductor structure is disclosed. The semiconductor structure includes: a channel layer; a barrier layer over the channel layer; a gate electrode over the barrier layer; and a doped layer formed between the barrier layer and the gate electrode. The doped layer includes (a) an interface layer in contact with the barrier layer and (b) a main layer between the interface layer and the gate electrode. The doped layer comprises a dopant whose doping concentration in the interface layer is lower than that in the main layer.
    Type: Application
    Filed: August 18, 2021
    Publication date: December 2, 2021
    Inventors: Ching-Yu CHEN, Wei-Ting CHANG, Yu-Shine LIN, Jiang-He XIE