Patents by Inventor Weifeng Fei
Weifeng Fei has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12099904Abstract: Aspects of the invention include converting an artificial intelligence (AI) model generated in a first framework to a uniform exchange formatted model by engaging a master table to retrieve instructions for converting from the AI model to the uniform exchange formatted model in accordance with the first framework. The uniform exchange formatted model in compiled by engaging the master table to retrieve instructions for compiling the uniform exchange formatted model in accordance with the first framework. Data is received as an input to the compiled uniform exchange formatted model and an output is generated by engaging the master table to retrieve instructions for generating the output in accordance with the first framework.Type: GrantFiled: March 10, 2021Date of Patent: September 24, 2024Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Li Cao, WeiFeng Zhang, Fei Fei Li, Ren Jie Feng, Han Su, Zhan Peng Huo, Zhong Hao Wang
-
Patent number: 8591996Abstract: A method for whisker formation on the surface of aluminum-containing metallic alloy fibers and substrates provides a support structure for many technical, medical and pharmaceutical applications. The novel surface modification of metallic alloy fibers and other metallic substrates involves heating the fiber or substrate in air at temperatures ranging from approximately 800° C. to approximately 1000° C. for a period of time ranging from approximately 10 hours to approximately 100 hours to form whiskers. The use of a metal oxide coating with large ions, such as zirconium oxide, allows the formation of alumina whiskers while preserving the structural integrity of the metallic alloy substrate. Uses of the present invention include, but are not limited to an advanced catalyst support, a highly efficient filter medium, a support for implants and the like.Type: GrantFiled: May 18, 2012Date of Patent: November 26, 2013Assignee: University of Central Florida Research Foundation, Inc.Inventors: Weifeng Fei, Suresh C. Kuiry, Sudipta Seal
-
Patent number: 8293048Abstract: This invention relates to polymer derived ceramics (PDC's) and more particularly, to methods and product made by using polymeric derived ceramic precursors to synthesize dense, crack-free bulk ceramics in a technique using sacrificial molds, coating processes, replication processes, assembly processes and finishing processes; where gas release paths are created and maintained during these processes to release gases generated during pyrolysis of the ceramic precursor. It is a primary objective of the present invention to provide a well defined method to create PDC voxels which are interconnected as a bulk (high density) material. Such a material is effectively a lattice with face centered cubic or hexagonal close pack geometry. A second objective of the present invention is to provide a method for bulk, high density material to be combined with fully dense material in a hybrid material.Type: GrantFiled: September 1, 2009Date of Patent: October 23, 2012Inventors: Weifeng Fei, Arnold Hill, Mark Tellam
-
Publication number: 20120227869Abstract: A method for whisker formation on the surface of aluminum-containing metallic alloy fibers and substrates provides a support structure for many technical, medical and pharmaceutical applications. The novel surface modification of metallic alloy fibers and other metallic substrates involves heating the fiber or substrate in air at temperatures ranging from approximately 800° C. to approximately 1000° C. for a period of time ranging from approximately 10 hours to approximately 100 hours to form whiskers. The use of a metal oxide coating with large ions, such as zirconium oxide, allows the formation of alumina whiskers while preserving the structural integrity of the metallic alloy substrate. Uses of the present invention include, but are not limited to an advanced catalyst support, a highly efficient filter medium, a support for implants and the like.Type: ApplicationFiled: May 18, 2012Publication date: September 13, 2012Inventors: Weifeng Fei, Suresh C. Kuiry, Sudipta Seal
-
Patent number: 8247034Abstract: A method for whisker formation on the surface of aluminum-containing metallic alloy fibers and substrates provides a support structure for many technical, medical and pharmaceutical applications. The novel surface modification of metallic alloy fibers and other metallic substrates involves heating the fiber or substrate in air at temperatures ranging from approximately 800° C. to approximately 1000° C. for a period of time ranging from approximately 10 hours to approximately 100 hours to form whiskers. The use of a metal oxide coating with large ions, such as zirconium oxide, allows the formation of alumina whiskers while preserving the structural integrity of the metallic alloy substrate. Uses of the present invention include, but are not limited to an advanced catalyst support, a highly efficient filter medium, a support for implants and the like.Type: GrantFiled: September 2, 2011Date of Patent: August 21, 2012Assignee: University of Central Florida Research Foundation, Inc.Inventors: Weifeng Fei, Suresh C. Kuiry, Sudipta Seal
-
Patent number: 8119057Abstract: A method and product made by using a polymeric ceramic precursor to synthesize dense, crack-free bulk ceramics in a technique using a sacrificial mold provides a ceramic structure for many technical, medical and industrial applications. The novel process uses an open cell material as a sacrificial mold to shape a ceramic precursor during curing. The cured ceramic green body can be machined and shaped to form the desired ceramic structure prior to final pyrolysis. The open cell material forms gas release paths to release large amount of gases generated during the pyrolysis of the cured ceramic precursor. After pyrolysis, an intact, dense, crack-free ceramic structure with high purity, strength and durability is obtained. Uses of the present invention include, but are not limited to, bulk ceramic parts, ceramic crucibles, a replacement material in some applications involving glass, silicon carbides, silicon nitrides, hafnium carbide and the like.Type: GrantFiled: February 17, 2009Date of Patent: February 21, 2012Assignee: University of Central Florida Research Foundation, Inc.Inventors: Weifeng Fei, Arnold Hill, Linan An
-
Publication number: 20110319259Abstract: A method for whisker formation on the surface of aluminum-containing metallic alloy fibers and substrates provides a support structure for many technical, medical and pharmaceutical applications. The novel surface modification of metallic alloy fibers and other metallic substrates involves heating the fiber or substrate in air at temperatures ranging from approximately 800° C. to approximately 1000° C. for a period of time ranging from approximately 10 hours to approximately 100 hours to form whiskers. The use of a metal oxide coating with large ions, such as zirconium oxide, allows the formation of alumina whiskers while preserving the structural integrity of the metallic alloy substrate. Uses of the present invention include, but are not limited to an advanced catalyst support, a highly efficient filter medium, a support for implants and the like.Type: ApplicationFiled: September 2, 2011Publication date: December 29, 2011Inventors: Weifeng Fei, Suresch C. Kuiry, Sudipta Seal
-
Patent number: 8084096Abstract: A method for whisker formation on the surface of aluminum-containing metallic alloy fibers and substrates provides a support structure for many technical, medical and pharmaceutical applications. The novel surface modification of metallic alloy fibers and other metallic substrates involves heating the fiber or substrate in air at temperatures ranging from approximately 800° C. to approximately 1000° C. for a period of time ranging from approximately 10 hours to approximately 100 hours to form whiskers. The use of a metal oxide coating with large ions, such as zirconium oxide, allows the formation of alumina whiskers while preserving the structural integrity of the metallic alloy substrate. Uses of the present invention include, but are not limited to an advanced catalyst support, a highly efficient filter medium, a support for implants and the like.Type: GrantFiled: May 24, 2005Date of Patent: December 27, 2011Assignee: University of Central Florida Research Foundation, Inc.Inventors: Weifeng Fei, Suresh C. Kuiry, Sudipta Seal
-
Publication number: 20100116412Abstract: This invention relates to polymer derived ceramics (PDC's) and more particularly, to methods and product made by using polymeric derived ceramic precursors to synthesize dense, crack-free bulk ceramics in a technique using sacrificial molds, coating processes, replication processes, assembly processes and finishing processes; where gas release paths are created and maintained during these processes to release gases generated during pyrolysis of the ceramic precursor. It is a primary objective of the present invention to provide a well defined method to create PDC voxels which are interconnected as a bulk (high density) material. Such a material is effectively a lattice with face centered cubic or hexagonal close pack geometry. A second objective of the present invention is to provide a method for bulk, high density material to be combined with fully dense material in a hybrid material.Type: ApplicationFiled: September 1, 2009Publication date: May 13, 2010Inventors: Weifeng Fei, Arnold Hill, Mark Tellam
-
Publication number: 20090209405Abstract: A method and product made by using a polymeric ceramic precursor to synthesize dense, crack-free bulk ceramics in a technique using a sacrificial mold provides a ceramic structure for many technical, medical and industrial applications. The novel process uses an open cell material as a sacrificial mold to shape a ceramic precursor during curing. The cured ceramic green body can be machined and shaped to form the desired ceramic structure prior to final pyrolysis. The open cell material forms gas release paths to release large amount of gases generated during the pyrolysis of the cured ceramic precursor. After pyrolysis, an intact, dense, crack-free ceramic structure with high purity, strength and durability is obtained. Uses of the present invention include, but are not limited to, bulk ceramic parts, ceramic crucibles, a replacement material in some applications involving glass, silicon carbides, silicon nitrides, hafnium carbide and the like.Type: ApplicationFiled: February 17, 2009Publication date: August 20, 2009Applicant: University of Central Florida Research Foundation, Inc.Inventors: Weifeng Fei, Arnold Hill, Linan An
-
Publication number: 20050129868Abstract: A method of depositing a zirconia-based ceramic coating (24) using a low velocity oxy-fuel (LVOF) process. Particles of zirconia (14) are mixed with second constituent particles (16) of a material having a melting temperature sufficiently low to be successfully deposited by an LVOF process. The second constituent particles may have a coefficient of thermal expansion within 30% of that of the zirconia particles, and/or they may have a thermal conductivity less than or no more than 20% higher that that of the zirconia particles. The second constituent particles may include calcium titanate, strontium titanate or sodium-zirconium-phosphate-silicate (NZPS). The capability to deposit the zirconia-containing particle mix with an LVOF process facilitates the in-situ repair of a component having a damaged zirconia-based thermal barrier coating.Type: ApplicationFiled: December 11, 2003Publication date: June 16, 2005Inventors: Vinod Philip, Sudipta Seal, Weifeng Fei, Satyajit Shukla