Patents by Inventor Weilin Gao

Weilin Gao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220097196
    Abstract: Disclosed are an antigravity shear-resisting and deformation-eliminating centerless grinding apparatus and a machining method. The grinding apparatus comprises a grinding tool configured to grind a thin-walled bearing ring and a clamping mechanism configured to clamp the thin-walled bearing ring stably. The clamping mechanism comprises a main clamping mechanism and an auxiliary clamping mechanism. The main clamping mechanism comprises an electromagnetic centerless clamp. The electromagnetic coil is arranged above the thin-walled bearing ring being ground. According to the present invention, not only can gravity of the thin-walled bearing ring and a tangential force generated by grinding be counteracted to effectively prevent extrusion deformation of the thin-walled bearing ring when being ground, but also the lubricating performance the capacity to resist load itself can be further improved and the service life of is prolonged.
    Type: Application
    Filed: September 17, 2021
    Publication date: March 31, 2022
    Inventors: Xiaochu LIU, Jinrui XIAO, Zhongwei LIANG, Rui ZHU, Zewei CHEN, Jianfeng HUANG, Weilin GAO, Xing TAO
  • Patent number: 10199132
    Abstract: A copper alloy sheet material comprises (by mass %) from 2.50 to 4.00% in total of Ni and Co, from 0.50 to 2.00% of Co, from 0.70 to 1.50% of Si, from 0 to 0.50% of Fe, from 0 to 0.10% of Mg, from 0 to 0.50% of Sn, from 0 to 0.15% of Zn, from 0 to 0.07% of B, from 0 to 0.10% of P, from 0 to 0.10% of REM, from 0 to 0.01% in total of Cr, Zr, Hf, Nb and S, the balance Cu and unavoidable impurities. A number density of coarse secondary phase particles (particle diameter of 5 mm or more) is 10 per mm2 or less. A number density of fine secondary phase particles (particle diameter of from 5 to 10 nm) is 1.0·109 per mm2 or more. A Si concentration in the parent phase is 0.10% by mass or more.
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: February 5, 2019
    Assignee: DOWA METALTECH CO., LTD.
    Inventors: Takashi Kimura, Toshiya Kamada, Weilin Gao, Fumiaki Sasaki, Akira Sugawara
  • Patent number: 10174406
    Abstract: A sheet material of a copper alloy has a chemical composition comprising 1.2 to 5.0 wt % of titanium, and the balance being copper and unavoidable impurities, the material having a mean crystal grain size of 5 to 25 ?m and (maximum crystal grain size?minimum crystal grain size)/(mean crystal grain size) being 0.20 or less, assuming that the maximum, minimum and mean values of mean values, each of which is the mean value of crystal grain sizes in a corresponding one of a plurality of regions which are selected from the surface of the sheet material at random and which have the same shape and size, are the maximum, minimum and mean crystal grain sizes, respectively, and the material having a crystal orientation satisfying I{420}/I0{420}>1.0, assuming that the intensities of X-ray diffraction on the {420} crystal plane of the surface of the material and the standard powder of pure copper are I{420} and I0{420}, respectively.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: January 8, 2019
    Assignee: DOWA METALTECH Co., Ltd.
    Inventors: Weilin Gao, Hisashi Suda, Hiroto Narieda, Akira Sugawara
  • Patent number: 9994933
    Abstract: A copper alloy sheet has a chemical composition containing 0.7 to 4.0 wt % of Ni, 0.2 to 1.5 wt % of Si, and the balance being copper and unavoidable impurities, the copper alloy sheet having a crystal orientation which satisfies I{200}/I0{200}?1.0, assuming that the intensity of X-ray diffraction on the {200} crystal plane on the surface of the copper alloy sheet is I{200} and that the intensity of X-ray diffraction on the {200} crystal plane of the standard powder of pure copper is I0{200}, and which satisfies I{200}/I{422}?15, assuming that the intensity of X-ray diffraction on the {422} crystal plane on the surface of the copper alloy sheet is I{422}.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: June 12, 2018
    Assignee: DOWA METAL TECH CO., LTD.
    Inventors: Weilin Gao, Tomotsugu Aoyama, Hisashi Suda, Hiroto Narieda, Akira Sugawara, Akifumi Onodera
  • Patent number: 9493859
    Abstract: Manufacturing method of a copper alloy sheet including melting and casting a raw material of a copper alloy having a composition containing 1.0 mass % to 3.5 mass % Ni, 0.5 mass % to 2.0 mass % Co, and 0.3 mass % to 1.5 mass % Si with a balance being composed of Cu and an unavoidable impurity. The method includes the steps of first cold rolling, intermediate annealing, second cold rolling, a solution heat treatment and aging. The solution heat treatment includes: heating at 800° C. to 1020° C.; first quenching to 500° C. to 800° C.; maintaining the 500° C. to 800° C. temperature for 10 seconds to 600 seconds; and second quenching to 300° C. or lower.
    Type: Grant
    Filed: October 30, 2014
    Date of Patent: November 15, 2016
    Assignee: DOWA METALTECH CO., LTD.
    Inventors: Weilin Gao, Akira Sugawara, Ryosuke Miyahara, Hisashi Suda
  • Patent number: 9412482
    Abstract: A Cu—Ni—Co—Si based copper alloy sheet material has second phase particles existing in a matrix, with a number density of ultrafine second phase particles is 1.0×109 number/mm2 or more. A number density of fine second phase particles is not more than 5.0×107 number/mm2. A number density of coarse second phase particles is 1.0×105 number/mm2 or more and not more than 1.0×106 number/mm2. The material has crystal orientation satisfying the following equation (1): I{200}/I0{200}?3.0??(1) wherein I{200} represents an integrated intensity of an X-ray diffraction peak of the {200} crystal plane on the sheet material sheet surface; and I0{200} represents an integrated intensity of an X-ray diffraction peak of the {200} crystal plane in a pure copper standard powder sample.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: August 9, 2016
    Assignee: DOWA METALTECH CO., LTD.
    Inventors: Toshiya Kamada, Takashi Kimura, Weilin Gao, Fumiaki Sasaki, Akira Sugawara
  • Patent number: 9396827
    Abstract: A Cu—Ti based copper alloy sheet material contains, in mass %, from 2.0 to 5.0% of Ti, from 0 to 1.5% Ni, from 0 to 1.0% Co, from 0 to 0.5% Fe, from 0 to 1.2% Sn, from 0 to 2.0% Zn, from 0 to 1.0% Mg, from 0 to 1.0% Zr, from 0 to 1.0% Al, from 0 to 1.0% Si, from 0 to 0.1% P, from 0 to 0.05% B, from 0 to 1.0% Cr, from 0 to 1.0% Mn, and from 0 to 1.0% V, the balance substantially being Cu. The sheet material has a metallic texture wherein in a cross section perpendicular to a sheet thickness direction, a maximum width of a grain boundary reaction type precipitate is not more than 500 nm, and a density of a granular precipitate having a diameter of 100 nm or more is not more than 105 number/mm2.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: July 19, 2016
    Assignee: DOWA METALTECH CO., LTD.
    Inventors: Weilin Gao, Motohiko Suzuki, Toshiya Kamada, Takashi Kimura, Fumiaki Sasaki, Akira Sugawara
  • Publication number: 20150357074
    Abstract: A copper alloy sheet material comprises (by mass %) from 2.50 to 4.00% in total of Ni and Co, from 0.50 to 2.00% of Co, from 0.70 to 1.50% of Si, from 0 to 0.50% of Fe, from 0 to 0.10% of Mg, from 0 to 0.50% of Sn, from 0 to 0.15% of Zn, from 0 to 0.07% of B, from 0 to 0.10% of P, from 0 to 0.10% of REM, from 0 to 0.01% in total of Cr, Zr, Hf, Nb and S, the balance Cu and unavoidable impurities. A number density of coarse secondary phase particles (particle diameter of 5 mm or more) is 10 per mm2 or less. A number density of fine secondary phase particles (particle diameter of from 5 to 10 nm) is 1.0·109 per mm2 or more. A Si concentration in the parent phase is 0.10% by mass or more.
    Type: Application
    Filed: February 10, 2014
    Publication date: December 10, 2015
    Inventors: Takashi KIMURA, Toshiya KAMADA, Weilin GAO, Fumiaki SASAKI, Akira SUGAWARA
  • Patent number: 9034123
    Abstract: This invention provides a copper alloy sheet material containing, in mass %, Ni: 0.7%-4.2% and Si: 0.2%-1.0%, optionally containing one or more of Sn: 1.2% or less, Zn: 2.0% or less, Mg: 1.0% or less, Co: 2.0% or less, and Fe: 1.0% or less, and a total of 3% or less of one or more of Cr, B, P, Zr, Ti, Mn and V, the balance being substantially Cu, and having a crystal orientation satisfying Expression (1): I{420}/I0{420}>1.0??(1), where I{420} is the x-ray diffraction intensity from the {420} crystal plane in the sheet plane of the copper alloy sheet material and I0{420} is the x-ray diffraction intensity from the {420} crystal plane of standard pure copper powder. The copper alloy sheet material has highly improved strength, post-notching bending workability, and stress relaxation resistance property.
    Type: Grant
    Filed: February 12, 2008
    Date of Patent: May 19, 2015
    Assignee: DOWA METALTECH CO., LTD.
    Inventors: Weilin Gao, Hisashi Suda, Hiroto Narieda, Akira Sugawara
  • Patent number: 8992702
    Abstract: There is provided a copper alloy sheet including 1.0 to 3.5 mass % Ni, 0.5 to 2.0 mass % Co, and 0.3 to 1.5 mass % Si, a Co/Ni mass ratio being 0.15 to 1.5, an (Ni+Co)/Si mass ratio being 4 to 7, and a balance being composed of Cu and an unavoidable impurity, wherein in observation results of a crystal grain boundary property and crystal orientation by EBSP measurement, a density of twin boundaries among all crystal grain boundaries is 40% or more and an area ratio of crystal grains with Cube orientation is 20% or more, on a rolled surface.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: March 31, 2015
    Assignee: Dowa Metaltech Co., Ltd
    Inventors: Weilin Gao, Akira Sugawara, Ryosuke Miyahara, Hisashi Suda
  • Publication number: 20150053314
    Abstract: Manufacturing method of a copper alloy sheet including melting and casting a raw material of a copper alloy having a composition containing 1.0 mass % to 3.5 mass % Ni, 0.5 mass % to 2.0 mass % Co, and 0.3 mass % to 1.5 mass % Si with a balance being composed of Cu and an unavoidable impurity. The method includes the steps of first cold rolling, intermediate annealing, second cold rolling, a solution heat treatment and aging. The solution heat treatment includes: heating at 800° C. to 1020° C.; first quenching to 500° C. to 800° C.; maintaining the 500° C. to 800° C. temperature for 10 seconds to 600 seconds; and second quenching to 300° C. or lower.
    Type: Application
    Filed: October 30, 2014
    Publication date: February 26, 2015
    Inventors: Weilin Gao, Akira Sugawara, Ryosuke Miyahara, Hisashi Suda
  • Patent number: 8871041
    Abstract: A sheet material of a copper alloy has a chemical composition including 1.2 to 5.0 wt % of titanium, and the balance being copper and unavoidable impurities, the material having a mean crystal grain size of 5 to 25 ?m and (maximum crystal grain size?minimum crystal grain size)/(mean crystal grain size) being 0.20 or less, and the material having a crystal orientation satisfying I{420}/I0{420}>1.0, assuming that the intensities of X-ray diffraction on the {420} crystal plane of the surface of the material and the standard powder of pure copper are I{420} and I0{420}, respectively.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: October 28, 2014
    Assignee: Dowa Metaltech Co., Ltd.
    Inventors: Weilin Gao, Hisashi Suda, Hiroto Narieda, Akira Sugawara
  • Publication number: 20140283963
    Abstract: A Cu—Ti based copper alloy sheet material contains, in mass %, from 2.0 to 5.0% of Ti, from 0 to 1.5% Ni, from 0 to 1.0% Co, from 0 to 0.5% Fe, from 0 to 1.2% Sn, from 0 to 2.0% Zn, from 0 to 1.0% Mg, from 0 to 1.0% Zr, from 0 to 1.0% Al, from 0 to 1.0% Si, from 0 to 0.1% P, from 0 to 0.05% B, from 0 to 1.0% Cr, from 0 to 1.0% Mn, and from 0 to 1.0% V, the balance substantially being Cu. The sheet material has a metallic texture wherein in a cross section perpendicular to a sheet thickness direction, a maximum width of a grain boundary reaction type precipitate is not more than 500 nm, and a density of a granular precipitate having a diameter of 100 nm or more is not more than 105 number/mm2.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 25, 2014
    Applicant: DOWA METAL TECH CO., LTD.
    Inventors: Weilin GAO, Motohiko Suzuki, Toshiya Kamada, Takashi Kimura, Fumiaki Sasaki, Akira Sugawara
  • Publication number: 20140116583
    Abstract: A Cu—Ni—Co—Si based copper alloy sheet material has second phase particles existing in a matrix, with a number density of ultrafine second phase particles is 1.0×109 number/mm2 or more. A number density of fine second phase particles is not more than 5.0×107 number/mm2. A number density of coarse second phase particles is 1.0×105 number/mm2 or more and not more than 1.0×106 number/mm2. The material has crystal orientation satisfying the following equation (1): I{200}/I0{200}?3.0??(1) wherein I{200} represents an integrated intensity of an X-ray diffraction peak of the {200} crystal plane on the sheet material sheet surface; and I0{200} represents an integrated intensity of an X-ray diffraction peak of the {200} crystal plane in a pure copper standard powder sample.
    Type: Application
    Filed: October 31, 2013
    Publication date: May 1, 2014
    Applicant: DOWA METALTECH CO., LTD.
    Inventors: Toshiya KAMADA, Takashi KIMURA, Weilin GAO, Fumiaki SASAKI, Akira SUGAWARA
  • Publication number: 20120279618
    Abstract: A sheet material of a copper alloy has a chemical composition comprising 1.2 to 5.0 wt % of titanium, and the balance being copper and unavoidable impurities, the material having a mean crystal grain size of 5 to 25 ?m and (maximum crystal grain size?minimum crystal grain size)/(mean crystal grain size) being 0.20 or less, assuming that the maximum, minimum and mean values of mean values, each of which is the mean value of crystal grain sizes in a corresponding one of a plurality of regions which are selected from the surface of the sheet material at random and which have the same shape and size, are the maximum, minimum and mean crystal grain sizes, respectively, and the material having a crystal orientation satisfying I{420}/I0{420}>1.0, assuming that the intensities of X-ray diffraction on the {420} crystal plane of the surface of the material and the standard powder of pure copper are I{420} and I0{420}, respectively.
    Type: Application
    Filed: July 19, 2012
    Publication date: November 8, 2012
    Applicant: DOWA METALTECH CO., LTD.
    Inventors: Weilin Gao, Hisashi Suda, Hiroto Narieda, Akira Sugawara
  • Patent number: 8097102
    Abstract: Provided is a Cu—Ti-based copper alloy sheet material that satisfies all the requirements of high strength, excellent bending workability and stress relaxation resistance and has excellent sprig-back resistance. The copper alloy sheet material has a composition containing, by mass, from 1.0 to 5.0% of Ti, and optionally containing at least one of at most 0.5% of Fe, at most 1.0% of Co and at most 1.5% of Ni, and further optionally containing at least one of Sn, Zn, Mg, Zr, Al, Si, P, B, Cr, Mn and V in an amount within a suitable range, with the balance of Cu and inevitable impurities, and having a crystal orientation satisfying the following expression (1) and preferably also satisfying the following expression (2). The mean crystal grain size of the material is controlled to be from 10 to 60 ?m. I{420}/I0{420}>1.0??(1) I{220}/I0{220}?3.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: January 17, 2012
    Assignee: Dowa Metaltech Co., Ltd.
    Inventors: Weilin Gao, Hisashi Suda, Hiroto Narieda, Akira Sugawara
  • Publication number: 20110240180
    Abstract: There is provided a copper alloy sheet including 1.0 to 3.5 mass % Ni, 0.5 to 2.0 mass % Co, and 0.3 to 1.5 mass % Si, a Co/Ni mass ratio being 0.15 to 1.5, an (Ni+Co)/Si mass ratio being 4 to 7, and a balance being composed of Cu and an unavoidable impurity, wherein in observation results of a crystal grain boundary property and crystal orientation by EBSP measurement, a density of twin boundaries among all crystal grain boundaries is 40% or more and an area ratio of crystal grains with Cube orientation is 20% or more, on a rolled surface.
    Type: Application
    Filed: July 9, 2010
    Publication date: October 6, 2011
    Applicant: DOWA METALTECH CO., LTD.
    Inventors: Weilin Gao, Akira Sugawara, Ryosuke Miyahara, Hisashi Suda
  • Publication number: 20100269959
    Abstract: A copper alloy sheet has a chemical composition containing 0.7 to 4.0 wt % of Ni, 0.2 to 1.5 wt % of Si, and the balance being copper and unavoidable impurities, the copper alloy sheet having a crystal orientation which satisfies I{200}/I0{200}?1.0, assuming that the intensity of X-ray diffraction on the {200} crystal plane on the surface of the copper alloy sheet is I{200} and that the intensity of X-ray diffraction on the {200} crystal plane of the standard powder of pure copper is I0{200}, and which satisfies I{200}/I{422}?15, assuming that the intensity of X-ray diffraction on the {422} crystal plane on the surface of the copper alloy sheet is I{422}.
    Type: Application
    Filed: April 26, 2010
    Publication date: October 28, 2010
    Applicant: DOWA METALTECH CO., LTD.
    Inventors: Weilin Gao, Tomotsugu Aoyama, Hisashi Suda, Hiroto Narieda, Akira Sugawara, Akifumi Onodera
  • Publication number: 20100139822
    Abstract: Provided is a Cu—Ti-based copper alloy sheet material that satisfies all the requirements of high strength, excellent bending workability and stress relaxation resistance and has excellent sprig-back resistance. The copper alloy sheet material has a composition containing, by mass, from 1.0 to 5.0% of Ti, and optionally containing at least one of at most 0.5% of Fe, at most 1.0% of Co and at most 1.5% of Ni, and further optionally containing at least one of Sn, Zn, Mg, Zr, Al, Si, P, B, Cr, Mn and V in an amount within a suitable range, with the balance of Cu and inevitable impurities, and having a crystal orientation satisfying the following expression (1) and preferably also satisfying the following expression (2). The mean crystal grain size of the material is controlled to be from 10 to 60 ?m. I{420}/I0{420}>1.0 ??(1) I{220}/I0{220}?3.
    Type: Application
    Filed: December 8, 2008
    Publication date: June 10, 2010
    Inventors: Weilin Gao, Hisashi Suda, Hiroto Narieda, Akira Sugawara
  • Publication number: 20100132851
    Abstract: A sheet material of a copper alloy has a chemical composition comprising 1.2 to 5.0 wt % of titanium, and the balance being copper and unavoidable impurities, the material having a mean crystal grain size of 5 to 25 ?m and (maximum crystal grain size?minimum crystal grain size)/(mean crystal grain size) being 0.20 or less, assuming that the maximum, minimum and mean values of mean values, each of which is the mean value of crystal grain sizes in a corresponding one of a plurality of regions which are selected from the surface of the sheet material at random and which have the same shape and size, are the maximum, minimum and mean crystal grain sizes, respectively, and the material having a crystal orientation satisfying I{420}/I0{420}>1.0, assuming that the intensities of X-ray diffraction on the {420} crystal plane of the surface of the material and the standard powder of pure copper are I{420} and I0{420}, respectively.
    Type: Application
    Filed: November 24, 2009
    Publication date: June 3, 2010
    Applicant: DOWA METALTECH CO., LTD.
    Inventors: Weilin Gao, Hisashi Suda, Hiroto Narieda, Akira Sugawara