Patents by Inventor Weimin Dong

Weimin Dong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240068069
    Abstract: Copper-tin-nickel brazing material prepared by alloys recycled from E-waste, preparation method therefor, and system thereof are provided. A preparation method for the copper-tin-nickel brazing material includes the following steps: (a) spreading nano-SiO2 on the bottom of crucible and then adding a crude copper-tin-iron-nickel alloy recycled from E-waste; (b) heating the crucible to melt the crude alloy into a metal liquid so that Zn and Pb in the metal liquid react with the SiO2 to form a slag that floats out; (c) introducing a refining gas to the bottom of metal liquid in step (b), thereby removing the scums or gases formed by Pb, Fe, S, and O in the metal liquid; (d) performing heat-preserving directional solidification on the metal liquid, to bias-aggregate the Fe and Sb at one end and remove the same to obtain a copper-based intermediate alloy; and smelting and powdering the copper-based intermediate alloy.
    Type: Application
    Filed: August 29, 2023
    Publication date: February 29, 2024
    Inventors: Weimin LONG, Tianran DING, Sujuan ZHONG, Li BAO, Junlan HUANG, Jiao YANG, Yuanyuan DONG, Hangyan XUE, Yanhong GUO
  • Publication number: 20140149151
    Abstract: A system and method are provided for identifying exposure concentrations. The process of determining exposure concentrations may include organizing exposure data, defining parameters, determining elevated exposure concentrations, and providing output results. The exposure data may relate to at least geographical locations, policies, accounts, portfolios, treaties, and other exposure data. The parameters may be defined to include at least an area of analysis, a region of interest, a threshold amount, results parameters, and other parameters. The exposure concentration may include at least defining and locating exposure locations using various techniques. The results may be presented using textual, graphical, or other display schemes. The output may be configured to convey information such as positional accuracy of an identified area, exposure accumulation in a defined area, and other information.
    Type: Application
    Filed: January 31, 2014
    Publication date: May 29, 2014
    Applicant: RISK MANAGEMENT SOLUTIONS, INC.
    Inventors: Han Chen, Weimin Dong, Andrew Coburn
  • Patent number: 8650053
    Abstract: A system and method are provided for identifying exposure concentrations. The process of determining exposure concentrations may include organizing exposure data, defining parameters, determining elevated exposure concentrations, and providing output results. The exposure data may relate to at least geographical locations, policies, accounts, portfolios, treaties, and other exposure data. The parameters may be defined to include at least an area of analysis, a region of interest, a threshold amount, results parameters, and other parameters. The exposure concentration may include at least defining and locating exposure locations using various techniques. The results may be presented using textual, graphical, or other display schemes. The output may be configured to convey information such as positional accuracy of an identified area, exposure accumulation in a defined area, and other information.
    Type: Grant
    Filed: February 16, 2013
    Date of Patent: February 11, 2014
    Assignee: Risk Management Solutions, Inc.
    Inventors: Han Chen, Weimin Dong, Andrew Coburn
  • Patent number: 8380545
    Abstract: A system and method are provided for identifying exposure concentrations. The process of determining exposure concentrations may include organizing exposure data, defining parameters, determining elevated exposure concentrations, and providing output results. The exposure data may relate to at least geographical locations, policies, accounts, portfolios, treaties, and other exposure data. The parameters may be defined to include at least an area of analysis, a region of interest, a threshold amount, results parameters, and other parameters. The exposure concentration may include at least defining and locating exposure locations using various techniques. The results may be presented using textual, graphical, or other display schemes. The output may be configured to convey information such as positional accuracy of an identified area, exposure accumulation in a defined area, and other information.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: February 19, 2013
    Assignee: Risk Management Solutions, Inc.
    Inventors: Han Chen, Weimin Dong, Andrew Coburn
  • Publication number: 20100205016
    Abstract: A system and method are provided for identifying exposure concentrations. The process of determining exposure concentrations may include organizing exposure data, defining parameters, determining elevated exposure concentrations, and providing output results. The exposure data may relate to at least geographical locations, policies, accounts, portfolios, treaties, and other exposure data. The parameters may be defined to include at least an area of analysis, a region of interest, a threshold amount, results parameters, and other parameters. The exposure concentration may include at least defining and locating exposure locations using various techniques. The results may be presented using textual, graphical, or other display schemes. The output may be configured to convey information such as positional accuracy of an identified area, exposure accumulation in a defined area, and other information.
    Type: Application
    Filed: April 20, 2010
    Publication date: August 12, 2010
    Applicant: Risk Management Solutions, Inc.
    Inventors: Han Chen, Weimin Dong, Andrew Coburn
  • Patent number: 7723449
    Abstract: The present invention relates to a catalyst for synthesizing a polypropylene with a wide molecular weight distribution and use of the same. The catalyst comprises magnesium halide, titanium-containing compound, and an organic phosphate type electron donor compound. By the catalyst according to the present invention, a propylene polymer with a wide molecular weight distribution, easily controllable isotacticity and good processing properties can be synthesized.
    Type: Grant
    Filed: July 3, 2008
    Date of Patent: May 25, 2010
    Assignee: Changchun Institute of Applied Chemistry Chinese Academy of Sciences
    Inventors: Chunyu Zhang, Hongguang Cai, Bin Chen, Yuping Yuan, Qiaofeng Zhang, Weimin Dong, Xuequan Zhang
  • Patent number: 7707050
    Abstract: A system and method are provided for identifying exposure concentrations. The process of determining exposure concentrations may include organizing exposure data, defining parameters, determining elevated exposure concentrations, and providing output results. The exposure data may relate to at least geographical locations, policies, accounts, portfolios, treaties, and other exposure data. The parameters may be defined to include at least an area of analysis, a region of interest, a threshold amount, results parameters, and other parameters. The exposure concentration may include at least defining and locating exposure locations using various techniques. The results may be presented using textual, graphical, or other display schemes. The output may be configured to convey information such as positional accuracy of an identified area, exposure accumulation in a defined area, and other information.
    Type: Grant
    Filed: March 11, 2004
    Date of Patent: April 27, 2010
    Assignee: Risk Management Solutions, Inc.
    Inventors: Han Chen, Weimin Dong, Andrew Coburn
  • Publication number: 20090168826
    Abstract: A semiconductor laser and a method of forming the same are provided. The n-side and p-side junctions are independently optimized to improve carrier flow. The material for the n-side cladding layer is selected to yield a small conduction to valance band gap offset ratio while the material for the p-side cladding layer is selected to yield a large conduction to valance band gap offset ratio.
    Type: Application
    Filed: March 26, 2008
    Publication date: July 2, 2009
    Applicant: nLight Photonics Corporation
    Inventors: Jason Nathaniel Farmer, Mark Andrew DeVito, Zhe Huang, Paul Andrew Crump, Michael Peter Grimshaw, Prabhuram Thiagarajan, Weimin Dong, Jun Wang
  • Publication number: 20090023881
    Abstract: The present invention relates to a catalyst for synthesizing a polypropylene with a wide molecular weight distribution and use of the same. The catalyst comprises magnesium halide, titanium-containing compound, and an organic phosphate type electron donor compound. By the catalyst according to the present invention, a propylene polymer with a wide molecular weight distribution, easily controllable isotacticity and good processing properties can be synthesized.
    Type: Application
    Filed: July 3, 2008
    Publication date: January 22, 2009
    Inventors: Chunyu Zhang, Hongguang Cai, Bin Chen, Yuping Yuan, Qiaofeng Zhang, Weimin Dong, Xuequan Zhang
  • Patent number: 7288611
    Abstract: Disclosed herein are a method for preparing a cis-1,4-polybutadiene with a controlled molecular weight distribution, comprising polymerizing butadiene monomers using a rare-earth catalyst system comprising: (a) at least one aliphatic hydrocarbon-soluble organometallic compound comprising at least one metal element chosen from the elements of atomic numbers 51-71 in the periodic table; (b) at least one organoaluminum compound of the formula: AlR1R22, (c) at least one aliphatic hydrocarbon-soluble halogen-containing compound; (d) optionally at least one alkylaluminum alkoxide; and (e) at least one conjugated double bond-containing organic compound, and methods of preparing the rare-earth catalyst system.
    Type: Grant
    Filed: September 27, 2004
    Date of Patent: October 30, 2007
    Assignee: Changchun Institute of Applied Chemistry Chinese Academy of Sciences
    Inventors: Liansheng Jiang, Xuequan Zhang, Weimin Dong, Xichun Liu, Jifu Bi
  • Publication number: 20070235839
    Abstract: A method of minimizing stress within large area semiconductor devices which utilize a GaAs substrate and one or more thick layers of AlxGa1-xAs is provided, as well as the resultant device. In general, each thick AlxGa1-xAs layer within the semiconductor structure is replaced, during the structure's fabrication, with an AlxGa1-xAszP1-z layer of approximately the same thickness and with the same concentrations of Al and Ga. The AlxGa1-xAszP1-z layer is lattice matched to the GaAs substrate by replacing a small percentage of the As in the layer with P.
    Type: Application
    Filed: October 7, 2005
    Publication date: October 11, 2007
    Applicant: nLight Photonics Corporation
    Inventors: Mark DeVito, Paul Crump, Jun Wang, Weimin Dong, Michael Grimshaw, Christopher Ebert
  • Publication number: 20070053396
    Abstract: A means of controlling the stress in a laser diode structure through the use of AlGaAsP is provided. Depending upon the amount of phosphorous in the material, it can be used to either match the lattice constant of GaAs, thus forming a strainless structure, or mismatch the lattice constant of GaAs, thereby adding tensile stress to the structure. Tensile stress can be used to mitigate the compressive stress due to material mismatches within the structure (e.g., a highly strained compressive quantum well), or due to the heat sink bonding procedure.
    Type: Application
    Filed: August 24, 2005
    Publication date: March 8, 2007
    Applicant: nLight Photonics Corporation
    Inventors: Mark DeVito, Paul Crump, Jun Wang, Weimin Dong, Michael Grimshaw
  • Publication number: 20060023763
    Abstract: A semiconductor laser and a method of forming the same are provided. The semiconductor laser includes cladding layers comprised of hybrid materials systems which have different conduction to valance band gap offset ratios with respect to GaAs. As a result of these hybrid structures, lower junction voltages on both the n-side and p-side of the laser structure are achieved, thereby increasing the electrical to optical conversion efficiency of the laser.
    Type: Application
    Filed: July 28, 2004
    Publication date: February 2, 2006
    Applicant: nLight Photonics Corporation
    Inventors: Jason Farmer, Mark DeVito, Zhe Huang, Paul Crump, Michael Grimshaw, Prabhuram Thiagarajan, Weimin Dong, Jun Wang
  • Publication number: 20050203778
    Abstract: A system and method are provided for identifying exposure concentrations. The process of determining exposure concentrations may include organizing exposure data, defining parameters, determining elevated exposure concentrations, and providing output results. The exposure data may relate to at least geographical locations, policies, accounts, portfolios, treaties, and other exposure data. The parameters may be defined to include at least an area of analysis, a region of interest, a threshold amount, results parameters, and other parameters. The exposure concentration may include at least defining and locating exposure locations using various techniques. The results may be presented using textual, graphical, or other display schemes. The output may be configured to convey information such as positional accuracy of an identified area, exposure accumulation in a defined area, and other information.
    Type: Application
    Filed: March 11, 2004
    Publication date: September 15, 2005
    Inventors: Han Chen, Weimin Dong, Andrew Coburn
  • Publication number: 20050113544
    Abstract: Disclosed herein are a method for preparing a cis-1,4-polybutadiene with a controlled molecular weight distribution, comprising polymerizing butadine monomers using a rare-earth catalyst system comprising (a). at least one aliphatic hydrocarbon-soluble organometallic compound comprising at least one metal element chosen from the elements of atomic numbers 51-71 in the periodic table; (b). at least one organoaluminum compound of the formula: AlR1R22, (c). at least one aliphatic hydrocarbon-soluble halogen-containing compound; (d). optionally at least one alkylaluminum alkoxide; and (e). at least one conjugated double bond-containing organic compound, and methods of preparing the rare-earth catalyst system.
    Type: Application
    Filed: September 27, 2004
    Publication date: May 26, 2005
    Inventors: Liansheng Jiang, Xuequan Zhang, Weimin Dong, Xichun Liu, Jifu Bi