Patents by Inventor Weimin Meng

Weimin Meng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11919845
    Abstract: The invention provides a reaction system for preparing butyraldehyde by propylene carbonylation, comprising: a reactor; a side wall of the reactor is sequentially provided with a catalyst inlet, a propylene inlet and a synthesis gas inlet from top to bottom; the bottom of the reactor is provided with a solvent inlet; two micro-interface generators are arranged inside of the reactor from top to bottom, and the micro-interface generator located at a top end is connected to the propylene inlet to break the propylene gas into micron-scale micro-bubbles; the micro-interface generator located at a bottom is connected to the synthesis gas inlet for breaking the synthesis gas into micron-scale micro-bubbles; the outlets of the two micro-interface generators are opposite, and the outlets are connected with a gas distributor for evenly distributing raw materials.
    Type: Grant
    Filed: July 30, 2021
    Date of Patent: March 5, 2024
    Assignee: NANJING INSTITUTE OF MICROINTERFACE TECHNOLOGY CO., LTD
    Inventors: Zhibing Zhang, Zheng Zhou, Lei Li, Feng Zhang, Weimin Meng, Baorong Wang, Gaodong Yang, Huaxun Luo, Guoqiang Yang, Hongzhou Tian, Yu Cao, Jia Liu
  • Publication number: 20240034707
    Abstract: The invention provides a reaction system for preparing butyraldehyde by propylene carbonylation, comprising: a reactor; a side wall of the reactor is sequentially provided with a catalyst inlet, a propylene inlet and a synthesis gas inlet from top to bottom; the bottom of the reactor is provided with a solvent inlet; two micro-interface generators are arranged inside of the reactor from top to bottom, and the micro-interface generator located at a top end is connected to the propylene inlet to break the propylene gas into micron-scale micro-bubbles; the micro-interface generator located at a bottom is connected to the synthesis gas inlet for breaking the synthesis gas into micron-scale micro-bubbles; the outlets of the two micro-interface generators are opposite, and the outlets are connected with a gas distributor for evenly distributing raw materials.
    Type: Application
    Filed: July 30, 2021
    Publication date: February 1, 2024
    Applicant: NANJING INSTITUTE OF MICROINTERFACE TECHNOLOGY CO., LTD
    Inventors: Zhibing ZHANG, Zheng ZHOU, Lei LI, Feng ZHANG, Weimin MENG, Baorong WANG, Gaodong YANG, Huaxun LUO, Guoqiang YANG, Hongzhou TIAN, Yu CAO, Jia LIU
  • Publication number: 20230167043
    Abstract: The invention provides a built-in micro-interface oxidation system for preparing terephthalic acid from p-xylene. The oxidation system includes a first reactor, a rectifying tower and a second reactor which are sequentially connected. A first outlet is disposed on a side wall of the first reactor; a first inlet is disposed on a side wall of the second reactor; a material inlet is disposed on a side wall of the rectifying tower; and a material outlet is disposed at a bottom of the rectifying tower. The first outlet is connected with the material inlet of the rectifying tower; the first inlet is connected with the material outlet of the rectifying tower. Micro-interface units are arranged in the first reactor and the second reactor for dispersing and crushing air into bubbles. Through disposing micro-interface units in reactors, problems of high energy consumption, high raw material consumption and low reaction efficiency are solved.
    Type: Application
    Filed: May 28, 2020
    Publication date: June 1, 2023
    Applicant: NANJING YANCHANG REACTION TECHNOLOGY RESEARCH INSTITUTE CO., LTD.
    Inventors: Zhibing ZHANG, Zheng ZHOU, Feng ZHANG, Lei LI, Weimin MENG, Baorong WANG, Gaodong YANG, Huaxun LUO, Guoqiang YANG, Hongzhou TIAN, Yu CAO
  • Patent number: 11649181
    Abstract: A treatment system and method for cephalosporin wastewater are disclosed. The treatment system includes: a flocculation and sedimentation device, an alkali reaction tank, a PAC reaction tank, a PAM reaction tank, a wastewater heat exchanger, a wastewater heater and an oxidation reactor that are connected with each other in sequence, wherein the wastewater heat exchanger is provided with a material inlet, a material outlet, a heat source inlet and a heat source outlet. An oxidized water from the oxidation reactor enters the wastewater heat exchanger from the heat source inlet, the heat source outlet is connected with a product canister, the product canister is connected with a membrane filtration device to realize concentration treatment of a landfill leachate, the material inlet is connected with the PAM reaction tank, and the material outlet is connected with the wastewater heater.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: May 16, 2023
    Assignee: NANJING YANCHANG REACTION TECHNOLOGY RESEARCH INSTITUTE CO. LTD.
    Inventors: Zhibing Zhang, Zheng Zhou, Feng Zhang, Lei Li, Weimin Meng, Baorong Wang, Gaodong Yang, Huaxun Luo, Guoqiang Yang, Hongzhou Tian, Yu Cao
  • Patent number: 11628415
    Abstract: A built-in micro interfacial enhanced reaction system and process for PTA production with PX are provided. The system includes a reactor and a micro interfacial unit disposed inside reactor. The reactor includes a shell, an inner cylinder concentrically disposed inside shell, and a circulating heat exchange device partially disposed outside shell, inner cylinder having a bottom end connected to inner bottom surface of the shell in closed manner and an open top end, a region between shell and inner cylinder being first reaction zone, inner cylinder containing second reaction zone and third reaction zone from top to bottom, circulating heat exchange device being connected to inner cylinder and micro interfacial unit respectively. The invention can solve problems of large waste of reaction solvent acetic acid under high temperature and high pressure and being unable to take out the product TA in time during existing process of PTA production with PX.
    Type: Grant
    Filed: November 18, 2020
    Date of Patent: April 18, 2023
    Assignee: NANJING YANCHANG REACTION TECHNOLOGY RESEARCH INSTITUTE CO., LTD.
    Inventors: Zhibing Zhang, Zheng Zhou, Feng Zhang, Lei Li, Weimin Meng, Baorong Wang, Gaodong Yang, Huaxun Luo, Guoqiang Yang, Hongzhou Tian, Yu Cao
  • Patent number: 11607663
    Abstract: A strengthening oxidation system of the external micro-interfacial unit for producing PTA with PX is provided, including: a reactor, a circulating heat exchange device and a micro-interfacial unit. The reactor includes an outer casing and an inner cylinder disposed concentrically inside the outer casing. The circulating heat exchange device is disposed at an exterior of the reactor, and is connected with the outer casing and the inner cylinder respectively, for regulating reaction temperatures of the first reaction zone, the second reaction zone and the third reaction zone inside the reactor in a reaction process of producing PTA with PX.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: March 21, 2023
    Assignee: NANJING YANCHANG REACTION TECHNOLOGY RESEARCH INSTITUTE CO., LTD.
    Inventors: Zhibing Zhang, Zheng Zhou, Feng Zhang, Lei Li, Weimin Meng, Baorong Wang, Gaodong Yang, Huaxun Luo, Guoqiang Yang, Hongzhou Tian, Yu Cao
  • Publication number: 20230043644
    Abstract: The invention discloses a micro-interface strengthening reaction system for preparing poly-?-olefin, which includes: a first polymerization reactor and a second polymerization reactor that are connected with each other in sequence, wherein a first micro-interface generator is disposed outside the first polymerization reactor, and a second micro-interface generator is disposed inside the second polymerization reactor. A bottom of the second polymerization reactor is provided with a discharge port, and the discharge port is connected with a hydrogen halide removal tower. By disposing the first micro-interface generator in the first polymerization reactor while disposing the second micro-interface generator in the second polymerization reactor, on the one hand it increases the mass transfer area between the gas phase and the liquid phase material, improves reaction efficiency and reduces energy consumption, and on the other hand it results in a higher evenness of the poly-?-olefin and improved product quality.
    Type: Application
    Filed: June 18, 2020
    Publication date: February 9, 2023
    Applicant: NANJING YANCHANG REACTION TECHNOLOGY RESEARCH INSTITUTE CO., LTD.
    Inventors: Zhibing ZHANG, Zheng ZHOU, Feng ZHANG, Lei LI, Weimin MENG, Baorong WANG, Gaodong YANG, Huaxun LUO, Guoqiang YANG, Hongzhou TIAN, Yu CAO
  • Publication number: 20220402787
    Abstract: A treatment system and method for cephalosporin wastewater are disclosed. The treatment system includes: a flocculation and sedimentation device, an alkali reaction tank, a PAC reaction tank, a PAM reaction tank, a wastewater heat exchanger, a wastewater heater and an oxidation reactor that are connected with each other in sequence, wherein the wastewater heat exchanger is provided with a material inlet, a material outlet, a heat source inlet and a heat source outlet. An oxidized water from the oxidation reactor enters the wastewater heat exchanger from the heat source inlet, the heat source outlet is connected with a product canister, the product canister is connected with a membrane filtration device to realize concentration treatment of a landfill leachate, the material inlet is connected with the PAM reaction tank, and the material outlet is connected with the wastewater heater.
    Type: Application
    Filed: May 27, 2020
    Publication date: December 22, 2022
    Applicant: NANJING YANCHANG REACTION TECHNOLOGY RESEARCH INSTITUTE CO., LTD.
    Inventors: Zhibing ZHANG, Zheng ZHOU, Feng ZHANG, Lei LI, Weimin MENG, Baorong WANG, Gaodong YANG, Huaxun LUO, Guoqiang YANG, Hongzhou TIAN, Yu CAO
  • Publication number: 20220395803
    Abstract: A strengthening oxidation system of the external micro-interfacial unit for producing PTA with PX is provided, including: a reactor, a circulating heat exchange device and a micro-interfacial unit. The reactor includes an outer casing and an inner cylinder disposed concentrically inside the outer casing. The circulating heat exchange device is disposed at an exterior of the reactor, and is connected with the outer casing and the inner cylinder respectively, for regulating reaction temperatures of the first reaction zone, the second reaction zone and the third reaction zone inside the reactor in a reaction process of producing PTA with PX.
    Type: Application
    Filed: May 28, 2020
    Publication date: December 15, 2022
    Applicant: NANJING YANCHANG REACTION TECHNOLOGY RESEARCH INSTITUTE CO., LTD.
    Inventors: Zhibing ZHANG, Zheng ZHOU, Feng ZHANG, Lei LI, Weimin MENG, Baorong WANG, Gaodong YANG, Huaxun LUO, Guoqiang YANG, Hongzhou TIAN, Yu CAO
  • Patent number: 11517868
    Abstract: A submerged propylene hydration micro-interface strengthening reaction system and a method are proposed. The system includes a reactor, a first micro-interface generator and a second micro-interface generator. Through the micro-interface generators, the propylene is broken to form micron-scale bubbles, which are mixed with reactants and deionized water to form a gas-liquid emulsion, so as to increase a phase boundary area between gas and liquid phases, and achieve a strengthening mass transfer effect under a lower preset operating condition. The micro-scale bubbles can be fully mixed with the deionized water to from a gas-liquid emulsion. By fully mixing gas and liquid phases, it can ensure that the deionized water in the system is in full contact with propylene, and they are fully in contact with the catalyst, which effectively improves the efficiency of preparing isopropanol.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: December 6, 2022
    Assignee: NANJING YANCHANG REACTION TECHNOLOGY RESEARCH INSTITUTE CO., LTD.
    Inventors: Zhibing Zhang, Zheng Zhou, Feng Zhang, Lei Li, Weimin Meng, Baorong Wang, Gaodong Yang, Huaxun Luo, Guoqiang Yang, Hongzhou Tian, Yu Cao
  • Publication number: 20220267182
    Abstract: An external micro-interface papermaking wastewater treatment system and a wastewater treatment method are proposed. The wastewater treatment system includes a grating water collection tank, a first coagulation sedimentation tank, an inclined screen and a second coagulation sedimentation tank which are connected in sequence, a heat exchanger, a preheater and a wet oxidation reactor, wherein the heat exchanger is provided with a first inlet, a first outlet, a second inlet and a second outlet. A feed inlet is disposed on a side wall of the wet oxidation reactor, an oxidation water outlet is disposed on a top of the wet oxidation reactor, the feed inlet is connected with a micro-interface generator for dispersing and breaking gas into gas bubbles, a liquid phase inlet and a gas phase inlet are disposed on the micro-interface generator, and the gas phase inlet is connected with an air compressor.
    Type: Application
    Filed: May 27, 2020
    Publication date: August 25, 2022
    Applicant: NANJING YANCHANG REACTION TECHNOLOGY RESEARCH INSTITUTE CO., LTD.
    Inventors: Zhibing ZHANG, Zheng ZHOU, Feng ZHANG, Lei LI, Weimin MENG, Baorong WANG, Gaodong YANG, Huaxun LUO, Guoqiang YANG, Hongzhou TIAN, Yu CAO
  • Patent number: 11406959
    Abstract: A micro-interface strengthening reaction system and method for preparing polyethylene by using a solution process are provided. The system includes a pre-polymerization reactor and a polymerization reactor connected in sequence. The pre-polymerization reactor is provided with a pre-polymerization micro-interface generators, and the polymerization reactor is provided with a micro-interface generator. The system further includes a desolvation tower for removing solvents and impurities from the polyethylene product. A polyethylene inlet is disposed at a middle part of the desolvation tower, and the polyethylene inlet is connected with the flash tank bottom outlet. A nitrogen micro-interface generator for dispersing and breaking high-temperature nitrogen into micro-bubbles is disposed within the desolvation tower.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: August 9, 2022
    Assignee: NANJING YANCHANG REACTION TECHNOLOGY RESEARCH INSTITUTE CO., LTD.
    Inventors: Zhibing Zhang, Zheng Zhou, Feng Zhang, Lei Li, Weimin Meng, Baorong Wang, Gaodong Yang, Huaxun Luo, Guoqiang Yang, Hongzhou Tian, Yu Cao
  • Publication number: 20220203318
    Abstract: A submerged propylene hydration micro-interface strengthening reaction system and a method are proposed. The system includes a reactor, a first micro-interface generator and a second micro-interface generator. Through the micro-interface generators, the propylene is broken to form micron-scale bubbles, which are mixed with reactants and deionized water to form a gas-liquid emulsion, so as to increase a phase boundary area between gas and liquid phases, and achieve a strengthening mass transfer effect under a lower preset operating condition. The micro-scale bubbles can be fully mixed with the deionized water to from a gas-liquid emulsion. By fully mixing gas and liquid phases, it can ensure that the deionized water in the system is in full contact with propylene, and they are fully in contact with the catalyst, which effectively improves the efficiency of preparing isopropanol.
    Type: Application
    Filed: May 28, 2020
    Publication date: June 30, 2022
    Applicant: NANJING YANCHANG REACTION TECHNOLOGY RESEARCH INSTITUTE CO., LTD.
    Inventors: Zhibing ZHANG, Zheng ZHOU, Feng ZHANG, Lei LI, Weimin MENG, Baorong WANG, Gaodong YANG, Huaxun LUO, Guoqiang YANG, Hongzhou TIAN, Yu CAO
  • Publication number: 20220203317
    Abstract: A micro-interface strengthening reaction system and method for preparing polyethylene by using a solution process are provided. The system includes a pre-polymerization reactor and a polymerization reactor connected in sequence. The pre-polymerization reactor is provided with a pre-polymerization micro-interface generators, and the polymerization reactor is provided with a micro-interface generator. The system further includes a desolvation tower for removing solvents and impurities from the polyethylene product. A polyethylene inlet is disposed at a middle part of the desolvation tower, and the polyethylene inlet is connected with the flash tank bottom outlet. A nitrogen micro-interface generator for dispersing and breaking high-temperature nitrogen into micro-bubbles is disposed within the desolvation tower.
    Type: Application
    Filed: June 18, 2020
    Publication date: June 30, 2022
    Applicant: NANJING YANCHANG REACTION TECHNOLOGY RESEARCH INSTITUTE CO., LTD.
    Inventors: Zhibing ZHANG, Zheng ZHOU, Feng ZHANG, Lei LI, Weimin MENG, Baorong WANG, Gaodong YANG, Huaxun LUO, Guoqiang YANG, Hongzhou TIAN, Yu CAO
  • Publication number: 20220204425
    Abstract: A benzene selective hydrogenation reaction system and a method are provided. The system includes a benzene refiner, a first hydrogenation reactor, a second hydrogenation reactor and a separator which are connected in sequence. The first hydrogenation reactor is provided with a first inlet and a first outlet, and the second hydrogenation reactor is provided with a second inlet and a second outlet. The first inlet is connected to the discharge port of the benzene refiner; the first outlet is connected to the second inlet; the second outlet is connected to the separator. The catalyst outlet is connected to the first hydrogenation reactor for recycling the catalyst into the first hydrogenation reactor. Two micro-interface units are respectively disposed within the first hydrogenation reactor and the second hydrogenation reactor, and the micro-interface units are used for dispersing and breaking hydrogen into micro-bubbles with a micron-scale diameter.
    Type: Application
    Filed: May 28, 2020
    Publication date: June 30, 2022
    Applicant: NANJING YANCHANG REACTION TECHNOLOGY RESEARCH INSTITUTE CO., LTD.
    Inventors: Zhibing ZHANG, Zheng ZHOU, Feng ZHANG, Lei LI, Weimin MENG, Baorong WANG, Gaodong YANG, Huaxun LUO, Guoqiang YANG, Hongzhou TIAN, Yu CAO
  • Patent number: 11370727
    Abstract: A benzene selective hydrogenation reaction system and a method are provided. The system includes a benzene refiner, a first hydrogenation reactor, a second hydrogenation reactor and a separator which are connected in sequence. The first hydrogenation reactor is provided with a first inlet and a first outlet, and the second hydrogenation reactor is provided with a second inlet and a second outlet. The first inlet is connected to the discharge port of the benzene refiner; the first outlet is connected to the second inlet; the second outlet is connected to the separator. The catalyst outlet is connected to the first hydrogenation reactor for recycling the catalyst into the first hydrogenation reactor. Two micro-interface units are respectively disposed within the first hydrogenation reactor and the second hydrogenation reactor, and the micro-interface units are used for dispersing and breaking hydrogen into micro-bubbles with a micron-scale diameter.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: June 28, 2022
    Assignee: NANJING YANCHANG REACTION TECHNOLOGY RESEARCH INSTITUTE CO., LTD.
    Inventors: Zhibing Zhang, Zheng Zhou, Feng Zhang, Lei Li, Weimin Meng, Baorong Wang, Gaodong Yang, Huaxun Luo, Guoqiang Yang, Hongzhou Tian, Yu Cao
  • Patent number: 11358887
    Abstract: The invention provides a treatment system and a treatment method for PMIDA high-salinity wastewater. The treatment system includes a booster pump, a water inlet-outlet heat exchanger, a water inlet heater and an oxidation reactor, and the water inlet-outlet heat exchanger is provided with a wastewater inlet, a wastewater outlet, an oxidized water inlet, and an oxidized water outlet. An oxidized water from the oxidation reactor enters the water inlet-outlet heat exchanger through the oxidized water inlet, the oxidized water outlet is connected to an intermediate tank, the wastewater inlet is connected to the booster pump, and the wastewater outlet is connected to a wastewater heater. A micro-interface unit is disposed at the lower part in the oxidation reactor, for dispersing crushed gas into bubbles. A gas inlet is formed at a side wall of the oxidation reactor and is connected to the micro-interface unit through a pipeline.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: June 14, 2022
    Assignee: NANJING YANCHANG REACTION TECHNOLOGY RESEARCH INSTITUTE CO., LTD.
    Inventors: Zhibing Zhang, Zheng Zhou, Feng Zhang, Lei Li, Weimin Meng, Baorong Wang, Gaodong Yang, Huaxun Luo, Guoqiang Yang, Hongzhou Tian, Yu Cao
  • Patent number: 11345865
    Abstract: The present invention relates to a micro-interface strengthening reaction system and method for heavy oil hydrogenation preparation of ship fuel, including a liquid phase feed unit, a gas phase feed unit, a micro-interface generator, a fixed-bed reactor and a separation tank. The present invention may reduce the pressure during the reaction by 10-80% while ensuring the efficiency of the reaction by breaking the gas to form micro-sized micro-bubbles and making the micro-bubbles mix with heavy oil to form an emulsion to increase the area between the gas and the liquid phase and to achieve the effect of enhancing mass transfer in a lower preset range. And, the present invention greatly enhances the mass transfer, so that the gas-liquid ratio can be greatly reduced. Also, the method of the present invention has low process severity, high production safety, low product cost per ton, and strong market competitiveness.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: May 31, 2022
    Assignee: Nanjing Yanchang Reaction Technology Research Institute Co., Ltd.
    Inventors: Zhibing Zhang, Zheng Zhou, Weimin Meng, Feng Zhang, Lei Li, Baorong Wang, Gaodong Yang, Huaxun Luo, Guoqiang Yang, Hongzhou Tian, Yu Cao
  • Patent number: 11267742
    Abstract: A built-in micro-interface papermaking wastewater treatment system and a treatment method are provided in the present invention. The treatment system includes a papermaking wastewater tank, a grid cleaner, an adjustment tank, a centrifugal filter and a sedimentation tank which are connected in sequence, and further includes a heat exchanger, a preheater, a wet oxidation reactor, a gas-liquid separator and a biodegradation tank. A micro-interface unit for dispersing and crushing gas into gas bubbles is disposed inside the wet oxidation reactor. The micro-interface unit includes a pneumatic micro-interface generator, a gas inlet is disposed at a side wall of the wet oxidation reactor, and the gas inlet extends to an interior of the pneumatic micro-interface generator through a pipeline. By arranging the micro-interface unit inside the wet oxidation reactor of the treatment system, the consumption of air or oxygen can be reduced, which realizes low energy consumption and high treatment efficiency.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: March 8, 2022
    Assignee: NANJING YANCHANG REACTION TECHNOLOGY RESEARCH INSTITUTE CO., LTD.
    Inventors: Zhibing Zhang, Zheng Zhou, Feng Zhang, Lei Li, Weimin Meng, Baorong Wang, Gaodong Yang, Huaxun Luo, Guoqiang Yang, Hongzhou Tian, Yu Cao
  • Publication number: 20220041478
    Abstract: The invention provides a treatment system and a treatment method for PMIDA high-salinity wastewater. The treatment system includes a booster pump, a water inlet-outlet heat exchanger, a water inlet heater and an oxidation reactor, and the water inlet-outlet heat exchanger is provided with a wastewater inlet, a wastewater outlet, an oxidized water inlet, and an oxidized water outlet. An oxidized water from the oxidation reactor enters the water inlet-outlet heat exchanger through the oxidized water inlet, the oxidized water outlet is connected to an intermediate tank, the wastewater inlet is connected to the booster pump, and the wastewater outlet is connected to a wastewater heater. A micro-interface unit is disposed at the lower part in the oxidation reactor, for dispersing crushed gas into bubbles. A gas inlet is formed at a side wall of the oxidation reactor and is connected to the micro-interface unit through a pipeline.
    Type: Application
    Filed: May 27, 2020
    Publication date: February 10, 2022
    Applicant: NANJING YANCHANG REACTION TECHNOLOGY RESEARCH INSTITUTE CO., LTD.
    Inventors: Zhibing ZHANG, Zheng ZHOU, Feng ZHANG, Lei LI, Weimin MENG, Baorong WANG, Gaodong YANG, Huaxun LUO, Guoqiang YANG, Hongzhou TIAN, Yu CAO