Patents by Inventor Weiming Ren

Weiming Ren has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11062874
    Abstract: The present disclosure proposes an anti-rotation lens and using it as an anti-rotation condenser lens in a multi-beam apparatus with a pre-beamlet-forming mechanism. The anti-rotation condenser lens keeps rotation angles of beamlets unchanged when changing currents thereof, and thereby enabling the pre-beamlet-forming mechanism to cut off electrons not in use as much as possible. In this way, the multi-beam apparatus can observe a sample with high resolution and high throughput, and is competent as a yield management tool to inspect and/or review defects on wafers/masks in semiconductor manufacturing industry.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: July 13, 2021
    Assignee: ASML Netherlands B.V.
    Inventors: Weiming Ren, Xuedong Liu, Xuerang Hu, Zhong-wei Chen
  • Patent number: 11062877
    Abstract: A multi-beam apparatus for observing a sample with high resolution and high throughput and in flexibly varying observing conditions is proposed. The apparatus uses a movable collimating lens to flexibly vary the currents of the plural probe spots without influencing the intervals thereof, a new source-conversion unit to form the plural images of the single electron source and compensate off-axis aberrations of the plural probe spots with respect to observing conditions, and a pre-beamlet-forming means to reduce the strong Coulomb effect due to the primary-electron beam.
    Type: Grant
    Filed: January 3, 2020
    Date of Patent: July 13, 2021
    Assignee: ASML Netherlands B.V.
    Inventors: Shuai Li, Weiming Ren, Xuedong Liu, Juying Dou, Xuerang Hu, Zhongwei Chen
  • Publication number: 20210193437
    Abstract: Systems and methods of forming images of a sample using a multi-beam apparatus are disclosed. The method may include generating a plurality of secondary electron beams from a plurality of probe spots on the sample upon interaction with a plurality of primary electron beams. The method may further include adjusting an orientation of the plurality of primary electron beams interacting with the sample, directing the plurality of secondary electron beams away from the plurality of primary electron beams, compensating astigmatism aberrations of the plurality of directed secondary electron beams, focusing the plurality of directed secondary electron beams onto a focus plane, detecting the plurality of focused secondary electron beams by a charged-particle detector, and positioning a detection plane of the charged-particle detector at or close to the focus plane.
    Type: Application
    Filed: December 18, 2020
    Publication date: June 24, 2021
    Inventors: Weiming REN, Zizhou GONG, Xuerang HU, Xuedong LIU, Zhong-wei CHEN
  • Publication number: 20210193433
    Abstract: A secondary projection imaging system in a multi-beam apparatus is proposed, which makes the secondary electron detection with high collection efficiency and low cross-talk. The system employs one zoom lens, one projection lens and one anti-scanning deflection unit. The zoom lens and the projection lens respectively perform the zoom function and the anti-rotating function to remain the total imaging magnification and the total image rotation with respect to the landing energies and/or the currents of the plural primary beamlets. The anti-scanning deflection unit performs the anti-scanning function to eliminate the dynamic image displacement due to the deflection scanning of the plural primary beamlets.
    Type: Application
    Filed: October 19, 2020
    Publication date: June 24, 2021
    Inventors: Weiming REN, Xuedong LIU, Xuerang HU, Zhongwei CHEN
  • Patent number: 11043354
    Abstract: One modified source-conversion unit and one method to reduce the Coulomb Effect in a multi-beam apparatus are proposed. In the modified source-conversion unit, the aberration-compensation function is carried out after the image-forming function has changed each beamlet to be on-axis locally, and therefore avoids undesired aberrations due to the beamlet tilting/shifting. A Coulomb-effect-reduction means with plural Coulomb-effect-reduction openings is placed close to the single electron source of the apparatus and therefore the electrons not in use can be cut off as early as possible.
    Type: Grant
    Filed: February 24, 2020
    Date of Patent: June 22, 2021
    Assignee: ASML Netherlands B.V.
    Inventors: Xuedong Liu, Weiming Ren, Shuai Li, Zhongwei Chen
  • Publication number: 20210151280
    Abstract: An improved source conversion unit of a charged particle beam apparatus is disclosed. The source conversion unit comprises a first micro-structure array including a plurality of micro-structures. The plurality of micro-structures is grouped into one or more groups. Corresponding electrodes of micro-structures in one group are electrically connected and driven by a driver to influence a corresponding group of beamlets. The micro-structures in one group may be single-pole structures or multi-pole structures. The micro-structures in one group have same or substantially same radial shifts from an optical axis of the apparatus. The micro-structures in one group have same or substantially same orientation angles with respect to their radial shift directions.
    Type: Application
    Filed: December 28, 2020
    Publication date: May 20, 2021
    Inventors: Xuerang HU, Xuedong LIU, Zhong-Wei CHEN, Weiming REN
  • Publication number: 20210151291
    Abstract: The present disclosure proposes a crossover-forming deflector array of an electro-optical system for directing a plurality of electron beams onto an electron detection device. The crossover-forming deflector array includes a plurality of crossover-forming deflectors positioned at or at least near an image plane of a set of one or more electro-optical lenses of the electro-optical system, wherein each crossover-forming deflector is aligned with a corresponding electron beam of the plurality of electron beams.
    Type: Application
    Filed: January 11, 2021
    Publication date: May 20, 2021
    Inventors: Weiming REN, Xuedong LIU, Xuerang HU, Zhong-wei CHEN
  • Publication number: 20210116398
    Abstract: Systems and methods of providing a probe spot in multiple modes of operation of a charged-particle beam apparatus are disclosed. The method may comprise activating a charged-particle source to generate a primary charged-particle beam and selecting between a first mode and a second mode of operation of the charged-particle beam apparatus. In the flooding mode, the condenser lens may focus at least a first portion of the primary charged-particle beam passing through an aperture of the aperture plate to form a second portion of the primary charged-particle beam, and substantially all of the second portion is used to flood a surface of a sample. In the inspection mode, the condenser lens may focus a first portion of the primary charged-particle beam such that the aperture of the aperture plate blocks off peripheral charged-particles to form the second portion of the primary charged-particle beam used to inspect the sample surface.
    Type: Application
    Filed: October 16, 2020
    Publication date: April 22, 2021
    Inventors: Weiming REN, Xuedong LIU, Zhong-wei CHEN, Xiaoyu JI, Xiaoxue CHEN, Weimin ZHOU, Frank Nan ZHANG
  • Patent number: 10892138
    Abstract: The present disclosure proposes a crossover-forming deflector array of an electro-optical system for directing a plurality of electron beams onto an electron detection device. The crossover-forming deflector array includes a plurality of crossover-forming deflectors positioned at or at least near an image plane of a set of one or more electro-optical lenses of the electro-optical system, wherein each crossover-forming deflector is aligned with a corresponding electron beam of the plurality of electron beams.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: January 12, 2021
    Assignee: ASML Netherlands B.V.
    Inventors: Weiming Ren, Xuedong Liu, Xuerang Hu, Zhong-wei Chen
  • Patent number: 10879032
    Abstract: An improved source conversion unit of a charged particle beam apparatus is disclosed. The source conversion unit comprises a first micro-structure array including a plurality of micro-structures. The plurality of micro-structures is grouped into one or more groups. Corresponding electrodes of micro-structures in one group are electrically connected and driven by a driver to influence a corresponding group of beamlets. The micro-structures in one group may be single-pole structures or multi-pole structures. The micro-structures in one group have same or substantially same radial shifts from an optical axis of the apparatus. The micro-structures in one group have same or substantially same orientation angles with respect to their radial shift directions.
    Type: Grant
    Filed: May 1, 2019
    Date of Patent: December 29, 2020
    Assignee: ASML Netherlands B.V.
    Inventors: Xuerang Hu, Xuedong Liu, Zhong-wei Chen, Weiming Ren
  • Patent number: 10879031
    Abstract: A multi-beam apparatus for observing a sample with high resolution and high throughput is proposed. In the apparatus, a source-conversion unit forms plural and parallel images of one single electron source by deflecting plural beamlets of a parallel primary-electron beam therefrom, and one objective lens focuses the plural deflected beamlets onto a sample surface and forms plural probe spots thereon. A movable condenser lens is used to collimate the primary-electron beam and vary the currents of the plural probe spots, a pre-beamlet-forming means weakens the Coulomb effect of the primary-electron beam, and the source-conversion unit minimizes the sizes of the plural probe spots by minimizing and compensating the off-axis aberrations of the objective lens and condenser lens.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: December 29, 2020
    Assignee: ASML Netherlands B.V.
    Inventors: Weiming Ren, Xuedong Liu, Xuerang Hu, Zhongwei Chen
  • Publication number: 20200388464
    Abstract: A multi-beam apparatus for observing a sample with high resolution and high throughput is proposed. In the apparatus, a source-conversion unit changes a single electron source into a virtual multi-source array, a primary projection imaging system projects the array to form plural probe spots on the sample, and a condenser lens adjusts the currents of the plural probe spots. In the source-conversion unit, the image-forming means is on the upstream of the beamlet-limit means, and thereby generating less scattered electrons. The image-forming means not only forms the virtual multi-source array, but also compensates the off-axis aberrations of the plurality of probe spots.
    Type: Application
    Filed: May 4, 2020
    Publication date: December 10, 2020
    Inventors: Weiming REN, Shuai LI, Xuedong LIU, Zhongwei CHEN
  • Publication number: 20200381211
    Abstract: Systems and methods of mitigating Coulomb effect in a multi-beam apparatus are disclosed. The multi-beam apparatus may include a charged-particle source configured to generate a primary charged-particle beam along a primary optical axis, a first aperture array comprising a first plurality of apertures having shapes and configured to generate a plurality of primary beamlets derived from the primary charged-particle beam, a condenser lens comprising a plane adjustable along the primary optical axis, and a second aperture array comprising a second plurality of apertures configured to generate probing beamlets corresponding to the plurality of beamlets, wherein each of the plurality of probing beamlets comprises a portion of charged particles of a corresponding primary beamlet based on at least a position of the plane of the condenser lens and a characteristic of the second aperture array.
    Type: Application
    Filed: May 28, 2020
    Publication date: December 3, 2020
    Inventors: Weiming REN, Xuedong LIU, Xuerang HU, Zhong-wei CHEN, Martinus Gerardus Johannes Maria MAASSEN
  • Publication number: 20200381212
    Abstract: Systems and methods of reducing the Coulomb interaction effects in a charged particle beam apparatus are disclosed. The charged particle beam apparatus may comprise a charged particle source and a source conversion unit comprising an aperture-lens forming electrode plate configured to be at a first voltage, an aperture lens plate configured to be at a second voltage that is different from the first voltage for generating a first electric field, which enables the aperture-lens forming electrode plate and the aperture lens plate to form aperture lenses of an aperture lens array to respectively focus a plurality of beamlets of the charged particle beam, and an imaging lens configured to focus the plurality of beamlets on an image plane. The charged particle beam apparatus may comprise an objective lens configured to focus the plurality of beamlets onto a surface of the sample and form a plurality of probe spots thereon.
    Type: Application
    Filed: May 29, 2020
    Publication date: December 3, 2020
    Inventors: Weiming REN, Xuedong LIU, Xuerang HU, Zhong-wei CHEN
  • Publication number: 20200381207
    Abstract: Systems and methods of enhancing imaging resolution by reducing crosstalk between detection elements of a secondary charged-particle detector in a multi-beam apparatus are disclosed. The multi-beam apparatus may comprise an electro-optical system for projecting a plurality of secondary charged-particle beams from a sample onto a charged-particle detector. The electro-optical system may include a first pre-limit aperture plate comprising a first aperture configured to block peripheral charged-particles of the plurality of secondary charged-particle beams, and a beam-limit aperture array comprising a second aperture configured to trim the plurality of secondary charged-particle beams. The charged-particle detector may include a plurality of detection elements, wherein a detection element of the plurality of detection elements is associated with a corresponding trimmed beam of the plurality of secondary charged-particle beams.
    Type: Application
    Filed: May 28, 2020
    Publication date: December 3, 2020
    Inventors: Weiming REN, Xuerang HU, Qingpo XI, Xuedong LIU
  • Patent number: 10811222
    Abstract: A secondary projection imaging system in a multi-beam apparatus is proposed, which makes the secondary electron detection with high collection efficiency and low cross-talk. The system employs one zoom lens, one projection lens and one anti-scanning deflection unit. The zoom lens and the projection lens respectively perform the zoom function and the anti-rotating function to remain the total imaging magnification and the total image rotation with respect to the landing energies and/or the currents of the plural primary beamlets. The anti-scanning deflection unit performs the anti-scanning function to eliminate the dynamic image displacement due to the deflection scanning of the plural primary beamlets.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: October 20, 2020
    Assignee: ASML Netherlands B.V.
    Inventors: Weiming Ren, Xuedong Liu, Xuerang Hu, Zhongwei Chen
  • Publication number: 20200321191
    Abstract: A multi-beam inspection apparatus supporting a plurality of operation modes is disclosed. The charged particle beam apparatus for inspecting a sample supporting a plurality of operation modes comprises a charged particle beam source configured to emit a charged particle beam along a primary optical axis, a movable aperture plate, movable between a first position and a second position, and a controller having circuitry and configured to change the configuration of the apparatus to switch between a first mode and a second mode. In the first mode, the movable aperture plate is positioned in the first position and is configured to allow a first charged particle beamlet derived from the charged particle beam to pass through. In the second mode, the movable aperture plate is positioned in the second position and is configured to allow the first charged particle beamlet and a second charged particle beamlet to pass through.
    Type: Application
    Filed: March 30, 2020
    Publication date: October 8, 2020
    Inventors: Weiming REN, Xuedong LIU, Xuerang HU, Zhong-wei CHEN
  • Publication number: 20200303155
    Abstract: A multi-beam apparatus for multi-beam inspection with an improved source conversion unit providing more beamlets with high electric safety, mechanical availability and mechanical stabilization has been disclosed. The source-conversion unit comprises an image-forming element array having a plurality of image-forming elements, an aberration compensator array having a plurality of micro-compensators, and a pre-bending element array with a plurality of pre-bending micro-deflectors. In each of the arrays, adjacent elements are placed in different layers, and one element may comprise two or more sub-elements placed in different layers. The sub-elements of a micro-compensator may have different functions such as micro-lens and micro-stigmators.
    Type: Application
    Filed: October 2, 2018
    Publication date: September 24, 2020
    Inventors: Xuerang HU, Xuedong LIU, Weiming REN, Zhong-wei CHEN
  • Publication number: 20200286707
    Abstract: A charged particle beam apparatus includes a beamlet forming unit configured to form and scan an array of beamlets on a sample. A first portion of the array of beamlets is focused onto a focus plane, and a second portion of the array of beamlets has at least one beamlet with a defocusing level with respect to the focus plane. The charged particle beam apparatus also includes a detector configured to detect an image of the sample formed by the array of beamlets, and a processor configured to estimate a level of separation between the focus plane and the sample based on the detected image and then reduce the level of separation based on the estimated level.
    Type: Application
    Filed: March 19, 2020
    Publication date: September 10, 2020
    Inventors: Martinus Gerardus, Maria, Johannes MAASSEN, Peter Paul HEMPENIUS, Weiming REN, Zhongwei CHEN
  • Publication number: 20200286705
    Abstract: One modified source-conversion unit and one method to reduce the Coulomb Effect in a multi-beam apparatus are proposed. In the modified source-conversion unit, the aberration-compensation function is carried out after the image-forming function has changed each beamlet to be on-axis locally, and therefore avoids undesired aberrations due to the beamlet tilting/shifting. A Coulomb-effect-reduction means with plural Coulomb-effect-reduction openings is placed close to the single electron source of the apparatus and therefore the electrons not in use can be cut off as early as possible.
    Type: Application
    Filed: February 24, 2020
    Publication date: September 10, 2020
    Inventors: Xuedong LIU, Weiming REN, Shuai LI, Zhongwei CHEN