Patents by Inventor Weining Man

Weining Man has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11618798
    Abstract: This invention relates generally to the field of quasicrystalline strictures. In preferred embodiments, the stopgap structure is more spherically symmetric than periodic structures facilitating the formation of stopgaps in nearly all directions because of higher rotational symmetries. More particularly, the invention relates to the use of quasicrystalline structures for optical, mechanical, electrical and magnetic purposes. In some embodiments, the invention relates to manipulating, controlling, modulating and directing waves including electromagnetic, sound, spin, and surface waves, for pre-selected range of wavelengths propagating in multiple directions.
    Type: Grant
    Filed: October 7, 2020
    Date of Patent: April 4, 2023
    Assignee: THE TRUSTEES OF PRINCETON UNIVERSITY
    Inventors: Paul Joseph Steinhardt, Paul Michael Chaikin, Weining Man
  • Publication number: 20210070905
    Abstract: This invention relates generally to the field of quasicrystalline strictures, In preferred embodiments, the stopgap structure is more spherically symmetric than periodic structures facilitating the formation of stopgaps in nearly all directions because of higher rotational symmetries. More particularly, the invention relates to the use of quasicrystalline structures for optical, mechanical, electrical and magnetic purposes. In some embodiments, the invention relates to manipulating, controlling, modulating and directing waves including electromagnetic, sound, spin, and surface waves, for pre-selected range of wavelengths propagating in multiple directions.
    Type: Application
    Filed: October 7, 2020
    Publication date: March 11, 2021
    Inventors: Paul Joseph Steinhardt, Paul Michael Chaikin, Weining Man
  • Patent number: 10882938
    Abstract: This invention relates generally to the field of quasicrystalline structures. In preferred embodiments, the stopgap structure is more spherically symmetric than periodic structures facilitating the formation of stopgaps in nearly all directions because of higher rotational symmetries. More particularly, the invention relates to the use of quasicrystalline structures for optical, mechanical, electrical and magnetic purposes. In some embodiments, the invention relates to manipulating, controlling, modulating and directing waves including electromagnetic, sound, spin, and surface waves, for pre-selected range of wavelengths propagating in multiple directions.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: January 5, 2021
    Assignee: The Trustees of Princeton University
    Inventors: Paul Joseph Steinhardt, Paul Michael Chaikin, Weining Man
  • Publication number: 20190248941
    Abstract: This invention relates generally to the field of quasicrystalline structures. In preferred embodiments, the stopgap structure is more spherically symmetric than periodic structures facilitating the formation of stopgaps in nearly all directions because of higher rotational symmetries. More particularly, the invention relates to the use of quasicrystalline structures for optical, mechanical, electrical and magnetic purposes. In some embodiments, the invention relates to manipulating, controlling, modulating and directing waves including electromagnetic, sound, spin, and surface waves, for pre-selected range of wavelengths propagating in multiple directions.
    Type: Application
    Filed: February 27, 2019
    Publication date: August 15, 2019
    Inventors: Paul Joseph Steinhardt, Paul Michael Chaikin, Weining Man
  • Patent number: 10246539
    Abstract: This invention relates generally to the field of quasicrystalline structures. In preferred embodiments, the stopgap structure is more spherically symmetric than periodic structures facilitating the formation of stopgaps in nearly all directions because of higher rotational symmetries. More particularly, the invention relates to the use of quasicrystalline structures for optical, mechanical, electrical and magnetic purposes. In some embodiments, the invention relates to manipulating, controlling, modulating and directing waves including electromagnetic, sound, spin, and surface waves, for pre-selected range of wavelengths propagating in multiple directions.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: April 2, 2019
    Assignee: The Trustees of Princeton University
    Inventors: Paul Joseph Steinhardt, Paul Michael Chaikin, Weining Man
  • Publication number: 20170233515
    Abstract: This invention relates generally to the field of quasicrystalline structures. In preferred embodiments, the stopgap structure is more spherically symmetric than periodic structures facilitating the formation of stopgaps in nearly all directions because of higher rotational symmetries. More particularly, the invention relates to the use of quasicrystalline structures for optical, mechanical, electrical and magnetic purposes. In some embodiments, the invention relates to manipulating, controlling, modulating and directing waves including electromagnetic, sound, spin, and surface waves, for pre-selected range of wavelengths propagating in multiple directions.
    Type: Application
    Filed: January 19, 2017
    Publication date: August 17, 2017
    Inventors: Paul J. Steinhardt, Paul Michael Chaikin, Weining Man
  • Patent number: 9567420
    Abstract: This invention relates generally to the field of quasicrystalline structures. In preferred embodiments, the stopgap structure is more spherically symmetric than periodic structures facilitating the formation of stopgaps in nearly all directions because of higher rotational symmetries. More particularly, the invention relates to the use of quasicrystalline structures for optical, mechanical, electrical and magnetic purposes. In some embodiments, the invention relates to manipulating, controlling, modulating and directing waves including electromagnetic, sound, spin, and surface waves, for pre-selected range of wavelengths propagating in multiple directions.
    Type: Grant
    Filed: October 21, 2013
    Date of Patent: February 14, 2017
    Assignee: The Trustees of Princeton University
    Inventors: Paul Joseph Steinhardt, Paul Michael Chaikin, Weining Man
  • Publication number: 20140051820
    Abstract: This invention relates generally to the field of quasicrystalline structures. In preferred embodiments, the stopgap structure is more spherically symmetric than periodic structures facilitating the formation of stopgaps in nearly all directions because of higher rotational symmetries. More particularly, the invention relates to the use of quasicrystalline structures for optical, mechanical, electrical and magnetic purposes. In some embodiments, the invention relates to manipulating, controlling, modulating and directing waves including electromagnetic, sound, spin, and surface waves, for pre-selected range of wavelengths propagating in multiple directions.
    Type: Application
    Filed: October 21, 2013
    Publication date: February 20, 2014
    Applicant: THE TRUSTEES OF PRINCETON UNIVERSITY
    Inventors: Paul Joseph Steinhardt, Paul Michael Chaikin, Weining Man
  • Patent number: 8599472
    Abstract: This invention relates generally to the field of quasicrystalline structures. In preferred embodiments, the stopgap structure is more spherically symmetric than periodic structures facilitating the formation of stopgaps in nearly all directions because of higher rotational symmetries. More particularly, the invention relates to the use of quasicrystalline structures for optical, mechanical, electrical and magnetic purposes. In some embodiments, the invention relates to manipulating, controlling, modulating and directing waves including electromagnetic, sound, spin, and surface waves, for pre-selected range of wavelengths propagating in multiple directions.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: December 3, 2013
    Assignee: The Trustees of Princeton University
    Inventors: Paul J. Steinhardt, Paul Michael Chaikin, Weining Man
  • Publication number: 20130302922
    Abstract: This invention relates generally to the field of quasicrystalline structures. In preferred embodiments, the stopgap structure is more spherically symmetric than periodic structures facilitating the formation of stopgaps in nearly all directions because of higher rotational symmetries. More particularly, the invention relates to the use of quasicrystalline structures for optical, mechanical, electrical and magnetic purposes. In some embodiments, the invention relates to manipulating, controlling, modulating and directing waves including electromagnetic, sound, spin, and surface waves, for pre-selected range of wavelengths propagating in multiple directions.
    Type: Application
    Filed: May 31, 2013
    Publication date: November 14, 2013
    Inventors: Paul Joseph Steinhardt, Paul Michael Chaikin, Weining Man
  • Patent number: 8508838
    Abstract: This invention relates generally to devices constructed from quasicrystalline heterostructures. In preferred embodiments, two or more dielectric materials are arranged in a two- or three-dimensional space in a lattice pattern having at least a five-fold symmetry axis and not a six-fold symmetry axis, such that the quasicrystalline heterostructure exhibits an energy band structure in the space, the band structure having corresponding symmetry, which symmetry is forbidden in crystals, and which band structure comprises a complete band gap. The constructed devices are adapted for manipulating, controlling, modulating, trapping, reflecting and otherwise directing waves including electromagnetic, sound, spin, and surface waves, for a pre-selected range of wavelengths propagating within or through the heterostructure in multiple directions.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: August 13, 2013
    Assignee: The Trustees of Princeton University
    Inventors: Paul Joseph Steinhardt, Paul Michael Chaikin, Weining Man
  • Patent number: 8394708
    Abstract: A method and system for assembling a quasicrystalline heterostructure. A plurality of particles is provided with desirable predetermined character. The particles are suspended in a medium, and holographic optical traps are used to position the particles in a way to achieve an arrangement which provides a desired property.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: March 12, 2013
    Assignees: New York University, The Trustees of Princeton University
    Inventors: David G. Grier, Yael Roichman, Weining Man, Paul Michael Chaikin, Paul Joseph Steinhardt
  • Publication number: 20120280166
    Abstract: This invention relates generally to the field of quasicrystalline structures. In preferred embodiments, the stopgap structure is more spherically symmetric than periodic structures facilitating the formation of stopgaps in nearly all directions because of higher rotational symmetries. More particularly, the invention relates to the use of quasicrystalline structures for optical, mechanical, electrical and magnetic purposes. In some embodiments, the invention relates to manipulating, controlling, modulating and directing waves including electromagnetic, sound, spin, and surface waves, for a pre-selected range of wavelengths propagating in multiple directions.
    Type: Application
    Filed: July 19, 2012
    Publication date: November 8, 2012
    Inventors: Paul Joseph Steinhardt, Paul Michael Chaikin, Weining Man
  • Patent number: 8243362
    Abstract: This invention relates generally to the field of quasicrystalline structures. In preferred embodiments, the structure is heterostructure comprising dielectric materials arranged in two-dimensional space such that the overall structure is more rotationally symmetric than periodic structures. Symmetry may be five-fold or greater than six-fold. Such higher rotational symmetries provide stopgaps in nearly all directions. More particularly, the invention relates to the use of quasicrystalline structures for optical, mechanical, electrical and magnetic purposes. In some embodiments, the invention relates to manipulating, controlling, modulating and directing waves including electromagnetic, sound, spin, and surface waves, for a pre-selected range of wavelengths propagating in multiple directions.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: August 14, 2012
    Assignee: The Trustees Of Princeton University
    Inventors: Paul Joseph Steinhardt, Paul Michael Chaikin, Weining Man
  • Publication number: 20120049112
    Abstract: This invention relates generally to the field of quasicrystalline structures. In preferred embodiments, the stopgap structure is more spherically symmetric than periodic structures facilitating the formation of stopgaps in nearly all directions because of higher rotational symmetries. More particularly, the invention relates to the use of quasicrystalline structures for optical. mechanical, electrical and magnetic purposes. In some embodiments, the invention relates to manipulating, controlling, modulating and directing waves including electromagnetic, sound, spin, and surface waves, for a pre-selected range of wavelengths propagating in multiple directions.
    Type: Application
    Filed: October 12, 2011
    Publication date: March 1, 2012
    Inventors: Paul Joseph Steinhardt, Paul Michael Chaikin, Weining Man
  • Patent number: 8064127
    Abstract: This invention relates generally to the field of quasicrystalline structures. In preferred embodiments, the stopgap structure is more spherically symmetric than periodic structures facilitating the formation of stopgaps in nearly all directions because of higher rotational symmetries. More particularly, the invention relates to the use of quasicrystalline structures for optical, mechanical, electrical and magnetic purposes. In some embodiments, the invention relates to manipulating, controlling, modulating and directing waves including electromagnetic, sound, spin, and surface waves, for a pre-selected range of wavelengths propagating in multiple directions.
    Type: Grant
    Filed: July 7, 2006
    Date of Patent: November 22, 2011
    Assignee: The Trustees of Princeton University
    Inventors: Paul Joseph Steinhardt, Paul Michael Chaikin, Weining Man
  • Publication number: 20110251072
    Abstract: A method and system for assembling a quasicrystalline heterostructure. A plurality of particles is provided with desirable predetermined character. The particles are suspended in a medium, and holographic optical traps are used to position the particles in a way to achieve an arrangement which provides a desired property.
    Type: Application
    Filed: June 17, 2011
    Publication date: October 13, 2011
    Inventors: David G. Grier, Yael Roichman, Weining Man, Paul Michael Chaikin, Paul Joseph Steinhardt
  • Patent number: 7981774
    Abstract: A method and system for assembling a quasicrystalline heterostructure. A plurality of particles is provided with desirable predetermined character. The particles are suspended in a medium, and holographic optical traps are used to position the particles in a way to achieve an arrangement which provides a desired property.
    Type: Grant
    Filed: July 7, 2006
    Date of Patent: July 19, 2011
    Assignee: New York University
    Inventors: David G. Grier, Yael Roichman, Weining Man, Paul Michael Chaikin, Paul Joseph Steinhardt
  • Publication number: 20090212265
    Abstract: This invention relates generally to the field of quasicrystalline structures. In preferred embodiments, the stopgap structure is more spherically symmetric than periodic structures facilitating the formation of stopgaps in nearly all directions because of higher rotational symmetries. More particularly, the invention relates to the use of quasicrystalline structures for optical, mechanical, electrical and magnetic purposes. In some embodiments, the invention relates to manipulating, controlling, modulating and directing waves including electromagnetic, sound, spin, and surface waves, for a pre-selected range of wavelengths propagating in multiple directions.
    Type: Application
    Filed: July 7, 2006
    Publication date: August 27, 2009
    Inventors: Paul Joseph Steinhardt, Paul Michael Chaikin, Weining Man
  • Publication number: 20070119522
    Abstract: A method and system for assembling a quasicrystalline heterostructure. A plurality of particles is provided with desirable predetermined character. The particles are suspended in a medium, and holographic optical traps are used to position the particles in a way to achieve an arrangement which provides a desired property.
    Type: Application
    Filed: July 7, 2006
    Publication date: May 31, 2007
    Inventors: David Grier, Yael Roichman, Weining Man, Paul Chaikin, Paul Steinhardt